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Abstract: Accurate component maps, which can significantly affect the efficiency, reliability and
availability of aero-engines, play a critical role in aero-engine performance simulation. Unfortunately,
the information of component maps is insufficient, leading to substantial limitations in practical
application, wherein compressors are of particular interest. Here, a data-driven-based compressor
map generation approach for transient aero-engine performance adaptation is investigated. A multi-
layer perceptron neural network is utilized in simulating the compressor map instead of conventional
interpolation schemes, and an adaptive variable learning rate backpropagation (ADVLBP) algorithm
is employed to accelerate the convergence and improve the stability in the training process. Aside
from that, two different adaptation strategies designed for steady state and transient conditions are
implemented to adaptively retrain the compressor network according to measurement deviations
until the accuracy requirements are satisfied. The proposed method is integrated into a turbofan
component-level model, and simulations reveal that the ADVLBP algorithm has the capability of
more rapid convergence compared with conventional training algorithms. In addition, the maximum
absolute measurement deviation decreased from 6.35% to 0.44% after steady state adaptation, and
excellent agreement between the predictions and benchmark data was obtained after transient
adaptation. The results demonstrate the effectiveness and superiority of the proposed component
map generation method.

Keywords: aero-engine; component map generation; transient performance; adaptation strategy;
neural network

1. Introduction

An Aero-engine is an aerothermodynamic system with strong nonlinearity and ad-
vanced technology. The complicated structural designs and rapid dynamic characteristics
of aero-engines are crucial in the pursuit of superior performance [1]. Engine designers
are faced with various challenges of satisfying growing aero-engine operation and main-
tenance requirements within the entire flight envelope and life cycle. Hence, a reliable
aero-engine mathematic model which can accurately simulate the actual engine behavior is
a top priority in aero-engine research [2,3].

The accuracy of an aero-engine mathematic model is strongly dependent on the quality
of the component maps, which are generated by implementing rigorous engine rig tests
in practice. Among these, compressors are of particular interest because they can cause
all sorts of operability problems, such as surges, stalls and fluttering [4], and they can sig-
nificantly influence the overall performance of aero-engines. Unfortunately, a compressor
map is unavailable to ordinary third-party users due to its time-consuming and costly
features, which leads to difficulties in its application for aero-engine models. The above
limitations motivate researchers to carry out performance adaptation of aero-engine models
by modifying or reconstructing compressor maps. According to existing experiment data,

Aerospace 2022, 9, 442. https://doi.org/10.3390/aerospace9080442 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9080442
https://doi.org/10.3390/aerospace9080442
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-0266-5850
https://doi.org/10.3390/aerospace9080442
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9080442?type=check_update&version=1


Aerospace 2022, 9, 442 2 of 22

the most commonly used method involves tuning the shape of universal maps to reduce
engine-to-model mismatches. Stamatis defined a set of scaling factors that represents the de-
gree of deviation between current and optimal key component performance parameters as
to-be-adapted parameters during the iterations [5]. In the foundation of this research, Kong
distinguished different scaling magnitudes between design and off-design conditions for
independent modification based on system identification [6]. Lu introduced an adaptation
method based on the aerothermodynamic inverse model to conducting the performance
diagnosis [7]. Furthermore, multiple optimization algorithms are applied to search for
scaling factors among potential solutions, such as a genetic algorithm (GA) [8], particle
swarm optimization (PSO) [9] and quantum PSO [10]. However, the aforementioned re-
search focused on single-point adaptation and neglected the relevance of each off-design
condition. Li made a breakthrough in nonlinear multiple-point adaptation [11] which fit
quadratic functions to corrected speed curves using scaling factors in off-design conditions.
The model predictive capabilities were improved for partial load performances. Despite
the extensive advantages and benefits of these modification approaches, the difficulty of
tracking with key parameters such as accuracy and local optimum remains a significant
impediment to performance adaptation.

Several attempts have been made in a different approach to capture characteristics
through data-driven-based methods, owing to their rapid and reliable response [12]. Neu-
ral networks (NNs) have been widely used to predict compressor performance [13–15].
Ghorbanian investigated a comparison across various NNs in reconstructing axial com-
pressor maps according to rig test data [16–18]. Ivanov proposed a computation method
for identifying limits by a support vector machine (SVM) and approximating the three-
dimensional shape by a response surface method (RSM) of the compressor map [19]. Xu
proposed a compressor modeling method by combining two kinds of partial least squares
(PLS) with a specific reference value to save computational time and improve accuracy [20].
Tian presented a hybrid model as a linear combination of an NN and PLS to describe the
thermodynamic performance of a scroll compressor [21]. Fei introduced a compressor map
prediction method using an NN based on the Gaussian kernel function [22]. Another data-
driven-based method for performance adaptation directly compensates the performance
model output values against the desired values. Volponi presented an enhanced self-tuning
on-board real-time model (eSTORM) for aero-engine fault diagnosis [23,24], wherein a
series of multi-layer perceptron NNs were adopted to compensate for the measured param-
eter residuals between the on-board model and actual engine as an empirical model [25].
Ma introduced an adaptive model modification method, estimating a long short-term
memory NN representing the initial errors between the performance variations of each
turbofan engine within the same fleet [26]. Volponi provided an empirical tuning method
for aligning the performance model to an individual engine being monitored to mitigate the
effects of engine-to-engine variations [27]. Zhou used Extreme Gradient Boosting (XGBoost)
to make the effects of the sequencing on convolution NN adaptation accuracy interpretable,
and the method performed well in precision, stability and comprehensibility [28]. Neverthe-
less, the two major classes of data-driven-based methods above possess separate apparent
limitations. The compressor performance prediction method relies on abundant component
experiment data, which is costly and time-consuming. Aside from that, the rig test results
of an individual component cannot reflect the online operating characteristic concerning
the matching and constraint conditions from the upstream and downstream components,
having an uncertain and unneglectable influence on the accuracy of the performance model.
On the other hand, the direct compensation method is built on measurement. It cannot
predict unmeasured parameters, restricting the extended application of the performance
model in controller designs and health monitoring.

To address this dilemma, the main contribution of this paper is proposing a novel
data-driven-based component map generation method for synthesizing the idea of adap-
tation. A multi-layer perceptron NN (MLP NN) is utilized to provide key compressor
performance parameters, and it is then integrated into a nonlinear component-level model
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(CLM) of the turbofan engine as an integrated CLM (ICLM). In order to accelerate the
convergence and improve the stability in the training process, an adaptive variable learning
rate backpropagation (ADVLBP) algorithm is proposed to update the network parameters.
Furthermore, this paper creatively adopts unmeasurable state deviations, which represent
the deviations between the current and actual component performance parameters, to
motivate the retraining of the compressor NN in the adaptation process. According to the
measurement deviations between the ICLM and reference engine, two different adaptation
strategies which contrapose to steady state and transient conditions are developed to es-
timate the state deviations, which are used to retrain the compressor MLP NN until the
accuracy of the ICLM meets the required target. The advantages of the proposed method
include that the quality of the generated MLP NN can be improved through adaptive
modification, which is independent of the massive experiment data. Meanwhile, the appli-
cation of this method is not only restricted to steady state conditions; it also has access to
implementing the transient adaptation. The component map reflected by the adapted MLP
NN is characterized by certain reasonable principles.

The remainder of this paper is organized as follows. Section 2 presents the methodol-
ogy. Section 3 introduces the application cases. The corresponding results are demonstrated
in Section 4. Section 5 concludes the paper.

2. Formulation of the Proposed Adaptation Method
2.1. Performance Adaptation

In this section, the formulation of a novel performance adaptation method is intro-
duced to achieve a more accurate CLM for the aero-engine. Due to the particularity of the
compressor, the conventional compressor map is replaced by an MLP NN to provide the
required key component performance parameters during the gas path calculation. It is
widely known that the MLP NN can update the parameters of each neuron according to
the gradient descent of the loss function and the chain derivation rule. The loss function is
generally constructed from the network output, and the target values are gathered from
the test dataset. This paper creatively adopts the deviations between the current and actual
component performance parameters to motivate the retraining of the compressor NN. The
network can approximate the compressor operating conditions after iterative convergence.
However, key component performance parameters cannot be measured directly in practical
application, causing difficulty in optimizing the compressor NN parameters adaptively.
In order to reconstruct the MLP NN to improve the accuracy of the ICLM offline, a map-
ping relationship is established between the deviations of the component performance
parameters and the deviations of the aero-engine measurable parameters according to
corresponding adaptation strategies under steady state and transient conditions. Different
adaptation strategies contain multiple approaches for potential problems and requirements,
such as network overfitting caused by small sample data and rationality of the shape of
speed lines. Finally, such deviations obtained from adaptation strategies can motivate the
network to retrain until the measurement deviations are minimized.

In general, any CLM of aero-engines can be simply expressed as follows:{
xk+1 = f (xk, uk) + wk
yk = h(xk, uk) + vk

, (1)

where f () denotes the process nonlinear vector function, h() denotes the observation
nonlinear vector function, k is the time index, u denotes the control input vector, y denotes
the measurable output vector, w and v denote the unrelated process noise and measurement
noise, respectively, x denotes the state vector, which represents the component performance
parameters, x ∈ RN1 and y ∈ RN2 .

The framework of the performance adaptation method is shown in Figure 1, includ-
ing the generation phase, the adaptation phase and the prediction phase. First, a set of
characteristic data from existing compressor maps is employed to train the MLP NN after
data augmentation. Then, state deviations can be obtained depending on the measurement



Aerospace 2022, 9, 442 4 of 22

deviations and adaptation strategies, which are applied to renew the MLP NN parameters.
Once the desired accuracy is achieved, the correction process can be terminated. Finally,
the adapted MLP NN integrates with the ICLM to implement aero-engine performance
prediction.
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2.2. Compressor Neural Network

A typical map of an axial compressor is schematically illustrated in Figure 2. In
the conventional approach, the corrected mass flow rate

.
m and efficiency η across the

compressor are expressed as a function of the pressure ratio π for constant speed lines n. In
order to address the non-uniqueness and poor conditioning issues of the compressor map
shapes in the conventional interpolation, Kurzke proposed auxiliary coordinates (β lines)
which have no physical meaning [29]. In this situation,

.
m, π and η can be simultaneously

adjusted as the output of the function. An MLP NN is used to establish the mapping
relationship in Equation (2), with due consideration to adaptation and prediction. It is
worth mentioning that the capacity of time series memory is not required concerning this
MLP NN, which represents a regression of the compressor map:[ .

m, π, η
]
= Ω(n, β), (2)

where n = [n1, n2, . . . , nl1 ]
T ∈ Rl1 and β = [β1, β2, . . . , βl2 ]

T ∈ Rl2 are the input vectors of
the rotating speed and β lines, respectively,

.
m ∈ R(l1×l2), π ∈ R(l1×l2) and η ∈ R(l1×l2) are

vectors of the state parameters and l1 and l2 are the dimensionality of the training points.
The fundamental calculation process is as follows. For an M−layer NN, the output of

the mth layer (0 ≤ m ≤ M− 1) will act as the input of the (m + 1)th layer:

am+1 = o(am) = gm+1
(

wm+1am + bm+1
)

, m = 0, 1, . . . , M− 1, (3)

where am is the output vector of the mth layer. bm+1 and wm+1 are the threshold vector and
the weight matrix of the (m + 1)th layer, respectively, g() is the activation function, o() is
the output transfer function, a0 = [n, β]T and aM =

[ .
m, π, η

]T .
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Figure 2. A typical map of an axial compressor.

The training algorithm is employed to update the weight and threshold values of the
network, minimizing the quadratic error function value J in Equation (4):

J =
1
2
(t− aM)

T
(t− aM), (4)

where t is the target output vector.
To accelerate the convergence and improve the stability further in the training process,

an adaptive variable learning rate backpropagation (ADVLBP) algorithm is proposed in
this paper. Two threshold parameters (ζ1 > 0 and ζ2 < 0) are set to evaluate the variation
of J. Considering the momentum, the weight increment formula of the mth layer can be
expressed as

wm
k+1 = wm

k + ∆wm
k+1 (5){

∆wm
k+1 = −∆wm

k
αk+1 = αkρ1

, ∆Jk > ζ1 (6)

{
∆wm

k+1 = µ∆wm
k + αk(1− µ)δm

k om−1
k

αk+1 = αk
, ζ2 ≤ ∆Jk ≤ ζ1 (7)

{
∆wm

k+1 = µ∆wm
k + αk(1− µ)δm

k om−1
k

αk+1 = αkρ2
, ∆Jk < ζ2 (8)

δm
k =

{
om

k (1− om
k )(t− am

k ), m = M
om

k (1− om
k )δ

m+1
k wm+1

k+1 , m = 1, 2, . . . , M− 1
(9)

where α is the learning rate, µ is the momentum coefficient, ρ1 and ρ2 are the learning rate
correction, 0 < µ < 1, 0 < ρ1 < 1, ρ2 > 1 and ∆Jk = Jk − Jk−1, where Jk is the quadratic
error function value at time k.

Once J exceeds a minimal pre-set value, the ADVLBP algorithm can be terminated,
and the network can predict the compressor performance parameters with high precision.

2.3. Steady State Adaptation Strategy

High-quality steady state data are fundamental for adaptation. Due to engine geom-
etry construction restrictions and hostile operating environments, most crucial gas path
parameters cannot be measured directly, including the compressor performance param-
eters [30]. An influence coefficient matrix (ICM) is utilized to obtain state deviations to
retrain the compressor NN [31,32]. The idea of the ICM-based method is a linearized
model-based inverse calculation. Multiple piecewise linear relationships between the state
deviations and measurement deviations can be established in the entire operating condi-
tions of aero-engines. However, a small amount of the steady state benchmark data can
cause a destabilized network without reliable application for the ICLM. It is inevitable to
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implement data augmentation for the MLP NN to ensure the stability and convergency of
the ICLM in the iterative computations. Since the aero-engine can approximatively be re-
garded as a second-order system, massive benchmark datasets are extended to prevent the
overfitting of the MLP NN using quadratic polynomials for the rotating speed n according
to the existing steady state data.

The ICLM presented with Equation (1) can be expanded in a Taylor series in Equation (10).
It is assumed that the higher order term HOT is neglected, and the ambient and control
conditions are maintained at the baseline operating points. A linearized relationship can
be simplified in Equation (11) between the deviation of the to-be-adapted compressor
performance parameters and the deviation of the measured parameters compared with the
benchmark datasets. Multiple ICMs are simultaneously established at the entire conditions
to improve the accuracy of the linear approximation:

y = y0 +
δ f (x, u)

δx
|0(x− x0) +

δ f (x, u)
δu

|0(u− u0) + HOT, (10)

z− y = H(θ)(
_
x − x), (11)

where H = (δ f (x, u)/δx)|0 is the ICM, z denotes the measurement from the benchmark
datasets, the superscript ∩ denotes the benchmark condition of the CLM and θ is the
scheduling parameter vector of the ICM. It is assumed that each θj (j = 1, 2, . . . , s) is a real
number and ranges between the identical minimum value θmin and the identical maximum
value θmax. The corrected rotating speed is selected as the scheduling parameter in this
paper, where

_
x ∈ RN1 and z ∈ RN2 .

Correspondingly, at certain ambient conditions, the state deviations representing the
deviation of the to-be-adapted compressor performance parameters can be estimated by
inverting the ICM:

_
x − x = H#(θ)(z− y) (12)

H#(θ) = H−1(θ), N1 = N2

H#(θ) = HT(θ)[H(θ)HT(θ)]−1, N1 > N2

H#(θ) = [HT(θ)H(θ)]−1HT(θ), N1 < N2

(13)

The state deviations estimated by the ICM-based method are transmitted into the MLP
NN directly as the basis of training, and the quadratic error function of the compressor NN
in Equation (4) can be revised as follows:

J = 1
2 (

_
x − x)T(

_
x − x)

= 1
2 [H

#(θ)(z− y)]T [H#(θ)(z− y)]
(14)

In this view, Equation (9) can be written compactly as

δm
k =

{
om

k (1− om
k )H#(θ)(z− y), m = M

om
k (1− om

k )δ
m+1
k wm+1

k+1 , m = 2, 3, . . . , M− 1
(15)

Under steady state operating conditions, a set of benchmark data corresponds to
a unique state value and the input value of the MLP NN. Specific values of n and β
determine the distribution location of the compressor map, which contains abundant input
combinations ([ni, β j], i = 1, 2, . . . , l1; j = 1, 2, . . . , l2). If steady state adaptation merely
acts on a single input, the parameters nearby the adapted point can be uncontrollable,
leading to computational divergence during the iteration of the CLM. Hence, the MLP NN
parameters under the input circumstances of all the β j and each ni should be simultaneously
adjusted by the same magnitude. The logical relationship can be expressed as shown in
Equation (16):

z− y⇒ _
x − x ⇒ (∆w, ∆b)⇒ (w, b) (16)
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where
(∆w, ∆b) = const
s. t. ∃ni ∈ n, ∀β j ∈ β

(17)

According to the above equations, the measurement deviations actuate the compressor
NN parameter update until the ICLM can simulate the actual engine behavior with suffi-
cient accuracy, as can be seen in Figure 3. The proposed steady state adaptation procedure
can be briefly described as follows:
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Step 1 Data augmentation: According to the existing steady state data, expand the
steady state benchmark datasets z using quadratic polynomials.

Step 2 Evaluating measurement deviations z− y: Use the current ICLM to carry out the
corresponding simulation according to the steady state benchmark datasets z and calculate
measurement deviations z− y. When the pre-set accuracy requirement is met, go to Step 5;
otherwise, go to Step 3.

Step 3 Estimating state deviations
_
x − x: Use the ICLM to establish a set of ICMs H(θ)

and reverse measurement deviations z− y to obtain state deviations
_
x − x according to

Equation (12).
Step 4 Retraining the MLP NN: Use the ADVLBP algorithm to update the compressor

NN parameters (w, b) to minimize the quadratic error function value J in Equation (14),
and then return to Step 2.

Step 5 Store the optimal parameters of the compressor NN.

2.4. Transient Adaptation Strategy

An additional application feature of the proposed method is not only tested for the
steady state adaptation, but it also extends the investigation into the transient adaptation.

The proposed steady state adaptation method can develop a high-precision ICLM in a
way. However, obtaining high-quality steady state data has proven to be difficult, being
time-consuming and expensive [33]. Meanwhile, intensive experiment studies at transient
conditions are performed to understand the operating characteristics of aero-engines better.
Hence, further research on the transient adaptation strategy is implemented in this section.

In contrast with the steady state adaptation strategy, state deviations under transient
conditions cannot be accurately estimated by the ICM-based method due to the noise
contamination of the transient benchmark data and the limit that ICM can only be applied
to one fixed steady state operating point. To address this issue, the unscented Kalman
filter (UKF), with high correction efficiency, strong robustness and a wide application
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range, is used to approximate the potential solutions [34,35]. This can reflect the nonlinear
relationship between the state and measurement deviations, depending on the transient
benchmark data. Furthermore, an elliptic fitting method is performed according to the
current MLP NN and original state deviations to generate newly fitted curves, which can
provide geometric constraints on the shape of the speed lines for transient multipoint
correction. Finally, the fitted state deviations can be obtained through comparisons with
the current NN output to motivate updating the weight and threshold values of the NN in
the new iteration.

A brief description of the UKF filtering process is introduced here. It is assumed that
the nonlinear system of aero-engines is provided by Equation (1), in which E(wkwT

k ) = Qk
and E(vkvT

k ) = Rk. The UKF recursion formula can be expressed as follows.
Step 1 involves filter initialization:

x̂0 = E(x0), Px0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (18){

Wm
i = λ/(r + λ)

Wc
i = λ/(r + λ) + (1− φ2 + ϕ)

, i = 0 (19)

Wm
i = Wc

i = 1/2(r + λ), i = 1, 2, . . . , 2r (20)

where x̂0 and Px0 are the mean and variance of the initial state, respectively, Wm and Wc are
the weight factors for solving the first-order and second-order characteristics, respectively,
λ = φ2(r + κ) − r is a scaling factor, φ is a zoom factor in regulating the distribution
distance of σ points (0 < φ < 1), κ is another zoom factor, ϕ denotes the information of the
state distribution, ϕ = 2 for the Gaussian system generally and r is the dimension of the
state vector.

Step 2 is calculation of the σ point:

χk−1 = [x̂k−1 x̂k−1 +
√
(r + λ)Pxk−1 x̂k−1 −

√
(r + λ)Pxk−1 ] (21)

where the subscript k− 1 indicates the last sampling step.
Step 3 is a time update:

χi,k|k−1 = f (χi,k−1, uk)

x̂k|k−1 =
2r
∑

i=0
Wm

i χi,k|k−1

Pxk|k−1 =
2r
∑

i=0
Wc

i (χi,k|k−1 − x̂k|k−1)(χi,k|k−1 − x̂k|k−1)
T + Qk−1

γi,k|k−1 = f (χi,k|k−1, uk−1)

ŷk|k−1 =
2r
∑

i=0
Wm

i γi,k|k−1

(22)

where χ and γ are the values of the σ points transferred from the process function and
observation function, respectively. The subscript k|k− 1 indicates the information at time
k based on the information available up to and including time k− 1. Finally, Pxk|k−1 is the
forecast error covariance.

Step 4 involves updating the measurement:

Pyk =
2r
∑

i=0
Wc

i (γi,k|k−1 − ŷk|k−1)(γi,k|k−1 − ŷk|k−1)
T + Rk

Pxkyk =
2r
∑

i=0
Wc

i (χi,k|k−1 − x̂k|k−1)(χi,k|k−1 − x̂k|k−1)
T

Kk = Pxkyk P−1
yk

x̂k = x̂k|k−1 + Kk(zk − ŷk|k−1)

Pxk = Pxk|k−1 − KkPyk KT
k

(23)
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where Pxkyk is the cross covariance, Pyk is the innovation covariance, Kk is the Kalman gain
matrix, x̂k is the state estimation and Pxk is the data assimilation error covariance.

After the UKF estimation is completed, the following objective is to retrain the com-
pressor NN. It is worth emphasizing that the locations of the transient operating points
distributed in the component map at the same corrected rotating speed can be diverse,
which can be seen in Figure 4. The excess power of aero-engines can broadly impact the
integrated dynamic property, leading to the magnitudes of the acceleration and deceleration
rates. Therefore, the correction of each β at the same speed line needs to be variational.
A nonlinear component map elliptic fitting method is applied to analytically construct
relationships among the key compressor parameters and replace conventional lookup
tables in an aero-engine model configuration [36,37]. The equation, adjusted for the

.
m

versus π map, is given by ( .
m0 − τ0

aπ

)2

+

(
π0 − υ0

bπ

)2
= 1 (24)

where aπ and bπ are the semi-major and semi-minor axes of the ellipse, respectively, and
.

m0 and π0 represent the corrected mass flow rate and pressure ratio in the fitted component
map, respectively, which centers at (τ0, υ0) by elliptic fitting. In addition, the capacity to
rotate freely from the ellipse is considered to increase the degrees of freedom in map tuning
such that

.
m versus π can be obtained by[ .

m
π

]
=

[
cos(απ) − sin(απ)
sin(απ) cos(απ)

][ .
m0
π0

]
, Φ(απ) =

[
cos(απ) − sin(απ)
sin(απ) cos(απ)

]
(25)

where απ is the angle of the ellipse to rotate and Φ is the rotational coefficient matrix.
The application of this elliptic fitting method for the selected map is shown in Figure 5,
where

_
x i − xi (i = 1, 2, 3) is the fitted state deviation of each operating point. The key

component parameters are modified using original state deviations estimated from the
UKF. The calculation procedure of

.
m versus η is closely analogous to that expressed in

Equations (24) and (25) such that it cannot be covered again here. The logical relationship
of the transient adaptation strategy can be expressed by

z− y⇒ _
x − x ⇒ _

x f − x ⇒ (∆w, ∆b)⇒ (w, b) (26)

where subscript f denotes the fitted parameters.
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The magnitude of the modification of the scaled map depends on the sub-coefficients
of the elliptic fitting method, simultaneously ensuring the rationality of the map shape
and nonlinear multipoint correction at the same speed line, and the ICLM after adapta-
tion can provide accurate matching to the actual engine under transient conditions. The
proposed transient adaptation method, which is illustrated in Figure 6, can be briefly
described as follows:
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Step 1 Evaluating measurement deviations z− y: The current ICLM is used to carry out
the corresponding simulation according to a set of transient benchmark data z containing
measurement noise and uncertainty, and measurement deviations z− y can be obtained
as an evaluation index. Once the pre-set accuracy requirement is met, proceed to Step 5;
otherwise, proceed to Step 2.

Step 2 Estimating original state deviations
_
x − x: The UKF expressed in Equations (18)–(23)

is utilized to estimate original state deviations
_
x − x according to measurement deviations

z− y.
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Step 3 State transition: The fitted points are the superposition of the points at the
current component map and original state deviations

_
x − x. On top of this foundation,

a nonlinear elliptic fitting method expressed in Equations (24) and (25) is employed to
reconstruct the shape of the map curves, and fitted state deviations

_
x f − x, corresponding

to all β at the same fitted speed lines, can be determined.
Step 4 Retraining the MLP NN: The ADVLBP algorithm is used to retrain the com-

pressor NN according to fitted state deviations
_
x f − x. Then, return to Step 1.

Step 5 Store the optimal parameters of the compressor NN.

3. Application

The objective of this research is a twin-spool turbofan engine, which is widely used in
aerospace applications. The configuration of the turbofan engine is illustrated in Figure 7.
The typical components of the engine contain an inlet, a fan, a high-pressure compressor
(HPC), a combustor, a high-pressure turbine (HPT), a low-pressure turbine (LPT), a mixer,
a bypass, an afterburner and a nozzle.
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Since the primary target of this paper is to assess the effectiveness of the proposed
adaptation method, the quality of the measurements is crucial for the above purpose. The
selected measurable parameters under a Gaussian white noise environment for perfor-
mance adaptation simulation are listed in Table 1. The measurable output vector of the
nonlinear system described in Equation (1) is given by

y = [nL, nH , Tt25, Pt3, Pt6, Tt6]
T ∈ R6 (27)

Table 1. Definition of engine’s measurable section numbers.

Measurement Symbol Unit Standard
Deviation

Low-pressure rotating speed nL rpm 0.0015
High-pressure rotating speed nH rpm 0.0015
HPC inlet total temperature Tt25 K 0.002

HPC outlet total pressure Pt3 kPa 0.0015
Mixer inner inlet total pressure Pt6 kPa 0.0015

Mixer inner inlet total
temperature Tt6 K 0.002

The CLM is established based on the previous work [38] by a set of mathematical for-
mulas for aero-engines according to the principles of aerothermodynamics, rotor dynamics
and other principles followed by various engine components. The gas path parameters
can be calculated by adopting a series of physically based empirical formulas under a few
assumptions. An MLP NN is substituted for the universal compressor map that is available
from the gas turbine performance simulation software GasTurb, providing indispensable
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compressor performance parameters in the iterative procedure of the ICLM. In addition,
relatively small amounts of data from the compressor map are insufficient to support the
training of the MLP NN. It is inevitable to expand the data by interpolation and extrapola-
tion schemes [39]. The state vector of the nonlinear system can be described in Equation
(1). However, due to the copyright protection and expensive cost of the experiment data, a
reference engine is a traditional CLM using another different compressor map implemented
as a lookup table to generate steady state and transient benchmark data:

x = [
.

m, π, η]
T ∈ R3 (28)

Three cases, Cases 1–3, are created to test the developed adaptation method. The first
case study assesses the convergence ability of the ADVLBP algorithm in the training phase.
The training dataset comes from a source of a universal compressor map in GasTurb. On
the other hand, the objectives of Case 2 and Case 3 are to directly evaluate the combined
accuracy and optimization procedure in the adaptation phase under the steady state and
transient conditions of aero-engines, respectively. Case 2 and Case 3 verify the capacity
of adaptation of the ICLM by corresponding adaptation strategies. The multipoint steady
state fuel flow rate is scheduled in Case 2, and the fuel flow rate varies according to the
controller following the rotating speed command schedule in Case 3. In addition, the
transient simulation of Case 3 considers random noise contamination, which can closely
simulate the actual operating environment.

4. Results and Discussion
4.1. Case 1

As previously introduced, Case 1 simulates the corrected mass flow rate, pressure
ratio and efficiency as a function of β and the corrected rotating speed for a compressor
NN. In the conventional approach, the compressor map is illustrated as a distribution of
discrete points, and the volume of data is relatively small. Due to the overfitting of the
MLP NN under the circumstances of small sample tasks, data augmentation is utilized to
expand the training datasets, and interpolation and extrapolation schemes are employed to
determine the unknown values at desired positions.

A total of 200 sets of the compressor map data from GasTurb was selected as the
training dataset. The data augmentation was carried out according to the following rules:
the auxiliary parameter β varied from −1.1 to 1.1 with an increment of 0.001, and the
corrected rotating speed n varied from 0.4 to 1.1 with an increment of 0.001. More than
800,000 sets of training data were obtained, following linear interpolation and extrapolation
principles. To avoid poorly conditioned network parameters and accelerate the convergence
of the MLP NN, normalization of the data needed to be performed before training.

The determination of the network structure parameters was high on the list of priori-
ties. The improper number of hidden layers and neuron nodes could lead to divergency,
inaccuracy and overfitting of the MLP NN. After empirical adjustment, the MLP NN em-
ployed in this paper contained an input layer, two hidden layers and an output layer. It
had two neurons in the input layer corresponding to two inputs (n and β). The numbers of
the hidden layer nodes were nine and seven, respectively. Finally, the network had three
neurons in the output layer, representing the state vector x.

To demonstrate that the ADVLBP algorithm could obtain higher accuracy and faster
convergence compared with the pure backpropagation (BP) [40] and variable learning rate
backpropagation (VLBP) [41] algorithms with the same quality and quantity training data,
a series of initial weight and threshold values of the MLP NN was generated equally for
the testing of the three algorithms. The parameters of the algorithm were set as follows:
ζ1 = 0.05, ζ2 = −0.5, ρ1 = 0.75 and ρ2 = 1.05. Under the circumstances of the same number
of iterations, which was 50, the simulated quadratic error function values of the three
algorithms are compared in Figure 8. As shown in Figure 8, the ADVLBP algorithm had an
obvious smoother and faster convergence procedure than the other two algorithms under
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the same parameter settings and performance function. This indicates that the ADVLBP
algorithm is more sensitive to the region in which the surface of the error gradient varies,
which can more strikingly achieve the learning purpose.

Aerospace 2022, 9, x FOR PEER REVIEW 14 of 24 
 

 

inaccuracy and overfitting of the MLP NN. After empirical adjustment, the MLP NN em-
ployed in this paper contained an input layer, two hidden layers and an output layer. It 
had two neurons in the input layer corresponding to two inputs ( n  and β ). The num-
bers of the hidden layer nodes were nine and seven, respectively. Finally, the network had 
three neurons in the output layer, representing the state vector x . 

To demonstrate that the ADVLBP algorithm could obtain higher accuracy and faster 
convergence compared with the pure backpropagation (BP) [40] and variable learning rate 
backpropagation (VLBP) [41] algorithms with the same quality and quantity training data, 
a series of initial weight and threshold values of the MLP NN was generated equally for 
the testing of the three algorithms. The parameters of the algorithm were set as follows: 

1 0.05ζ = , 2 0.5ζ = − , 1 0.75ρ =  and 2 1.05ρ = . Under the circumstances of the same 
number of iterations, which was 50, the simulated quadratic error function values of the 
three algorithms are compared in Figure 8. As shown in Figure 8, the ADVLBP algorithm 
had an obvious smoother and faster convergence procedure than the other two algorithms 
under the same parameter settings and performance function. This indicates that the 
ADVLBP algorithm is more sensitive to the region in which the surface of the error gradi-
ent varies, which can more strikingly achieve the learning purpose. 

 
Figure 8. The comparison diagram of the three algorithms. 

A further investigation was performed for the prediction accuracy of the MLP NN. 
Figure 9 illustrates the results for the BP, VLBP and ADVLBP algorithms. It can be seen in 
Figure 9 that the values at all speed lines estimated by each of the above three MLP NNs 
were in good agreement with the test data, and the visual locations of them were distin-
guished inconspicuously. It may be concluded that all the MLP NNs were able to model 
the characteristic curves. That aside, a careful inspection of Figure 9 reveals that the pre-
diction differences of the MLP NNs based on the BP, VLBP and ADVLBP algorithms at 
each speed line were evident in quantitative terms according to the root mean square error 
(RMSE) provided in Equation (29): 

1
2

11

1 ( )
G

RMSE i i
i

E x x
G =

= −   (29) 

where 1G  is the number of the test data at each speed line and x  and x  are the test 
and estimated state vectors, respectively. 

Figure 8. The comparison diagram of the three algorithms.

A further investigation was performed for the prediction accuracy of the MLP NN.
Figure 9 illustrates the results for the BP, VLBP and ADVLBP algorithms. It can be seen
in Figure 9 that the values at all speed lines estimated by each of the above three MLP
NNs were in good agreement with the test data, and the visual locations of them were
distinguished inconspicuously. It may be concluded that all the MLP NNs were able to
model the characteristic curves. That aside, a careful inspection of Figure 9 reveals that the
prediction differences of the MLP NNs based on the BP, VLBP and ADVLBP algorithms at
each speed line were evident in quantitative terms according to the root mean square error
(RMSE) provided in Equation (29):

ERMSE =

√√√√ 1
G1

G1

∑
i=1

(
_
x i − xi)

2
(29)

where G1 is the number of the test data at each speed line and x and
_
x are the test and

estimated state vectors, respectively.
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Figure 10 presents the predicted RMSE of the MLP NNs using the BP, VLBP and
ADVLBP algorithms at each speed line. From the figure, the blue lines are distributed
underneath the other two lines in general, which shows that the ADVLBP-based NN had a
more acceptable prediction accuracy than the other two NNs. Otherwise, the maximum
values of the RMSE of

.
m based on the BP, VLBP and ADVLBP algorithms were 0.477,

0.569 and 0.282, respectively, the maximum values of the RMSE of π based on the BP,
VLBP and ADVLBP algorithms were 0.027, 0.058 and 0.023, respectively, and the maximum
values of the RMSE of η based on the BP, VLBP and ADVLBP algorithms were 0.003, 0.002
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and 0.001, respectively. In summary, the proposed MLP NN in this paper can accurately
reflect the compressor performance in different situations, which has the capability of rapid
convergence.
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4.2. Case 2

The objective of the second case was to test the accuracy of the proposed adaptation
method in steady state conditions, and state deviations were obtained using the steady
state adaptation strategy according to measurement deviations in the premise of data
augmentation. Multiple off-design points were used to verify the matching degree between
the ICLM and the reference engine.

In the international standard atmosphere (ISA) conditions, a series of simulations of
the ICLM before and after adaptation were performed compared with the steady state
benchmark data. The eight operating points were arranged in sequence from the high to
low conditions of the aero-engine. Point 8 of the original model had the worst accuracy
concerning the relatively lowest state, which can be seen in Figures 11 and 12. It is observed
in Figure 12 that the ICLM cannot simulate the performance of the reference engine at an
appropriate level of accuracy before any retraining of the compressor NN is employed.
Substantial improvements in performance accuracy occurred after the adaptation. The
maximum absolute error decreased from 6.35% to 0.44%. To make the results more intuitive,
Figure 12 shows the absolute errors of nH , Pt3, Pt6 and Tt6, which exceeded 1%. All
measured parameters for the adapted ICLM presented an absolute error in the range from
−0.5% to 0.5%.
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Moreover, in order to better evaluate the overall quality of the proposed adaptation
method, the average measurement deviation is introduced in Equation (30), and the cor-
responding simulation is presented in Figure 13. The blue and purple bars represent
the unadapted and adapted CLMs, respectively. An apparent reduction in magnitude
can be seen, and the maximum average measurement deviation decreased from 5.93% to
0.39%. Figure 14 presents the iterative convergence procedure of the steady state adap-
tation method based on the ICM. As shown in Figure 14, the prediction accuracy was
improved with the increasing iteration. Among them, the ordinate represents the max-
imum measurement deviations, and the abscissa represents the average 2-norm of the
state deviations, where G3 denotes the number of steady state benchmark datasets. It
declares that the prediction accuracy sharply improved with a rapid linear approximation,
and the adapted ICLM met the expected requirements through only two iterations. The
average 2-norms of the state deviations in the first and second iteration were 5.68 and
2.01, respectively. Figure 15 presents the state deviations obtained as a result of the inverse
calculation with the ICM during the adaptation procedure. The state deviations could
motivate the retraining of the MLP NN in each iteration until the required accuracy of
measurement was met:

Eavg =
1

G2

G2

∑
i=1

|yi − zi|
zi

(30)

where G2 denotes the number of off-design points.
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The proposed method facilitated an accurate prediction of the aero-engine performance
at steady state conditions. It could support multipoint adaptation with the compressor
NN’s retraining, which indicated the simultaneous modification of the whole map.
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4.3. Case 3

In general, the transient behavior could provide an intuitive contrast of response and
accuracy during various operational modes of aero-engines, even if the adaptation task
were computationally and qualitatively challenging. Any deviations in the prediction
of measurable parameters highlight the effectiveness of UKF estimation and map fitting
employed to retrain the compressor NN under all transient conditions, whether quasi-
steady state or dynamic conditions. This case study explored the implementation and
testing of the proposed compressor map generation method for transient adaptation.

For this case study, the transient benchmark data with random noise contamination
was generated according to the reference engine, following the rotating speed command
schedule by the controllers under throttle conditions. The operating point of the turbofan
engine was selected in the subsonic cruise point, wherein the flight altitude was 11 km and
the Mach number was 0.8. The sampling frequency was 40 Hz. Figure 16 illustrates the
prediction of the unadapted and adapted CLMs compared with the transient benchmark
data. It is observed in Figure 16 that obvious divergencies occurred between the red
dashed curves and black solid curves along with uncertain fluctuations, which represent
the unadapted output data and transient benchmark data of the measurable parameters,
respectively. Aside from that, the blue dash-dotted curves representing the adapted output
almost coincided with the black solid curves. Furthermore, relative measurement deviations
before and after adaptation are shown in Figures 17 and 18. Pt3 and Tt6 of the unadapted
ICLM presented a maximum measurement deviation in the range from −8 to 8%, and the
maximum measurement of the adapted ICLM took place in the range from −1 to 1.5%.
Moreover, the RMSEs of nL, nH , Tt25, Pt3, Pt6 and Tt6 before adaptation were 1.006, 0.883,
0.228, 2.816, 1.775 and 2.791, respectively, and the RMSEs of nL, nH , Tt25, Pt3, Pt6 and Tt6
after adaptation were 0.265, 0.241, 0.079, 0.553, 0.354 and 0.624, respectively. The relevant
results indicate that the adapted ICLM simulations, which came to adaptive tuning of a
series of parameters of the compressor NN in an engine model configuration, matched the
measurements provided by the reference engine at a very accurate level.

Another concern of the proposed method is the entire process of adaptation. Figure 19
presents an estimation procedure of the UKF to obtain state errors, wherein the ordinate
denotes the specific value of the estimated states to the initial states (

_
x /x). As shown in

Figure 19, the adaptation process converged after three iterations with the interrelated MLP
NN update. Figure 20 depicts the compressor map trajectories during the transient response
of the ICLM before and after adaptation. The operating curves are scattered among multiple
speed lines, which illustrates that the map generation method can deal effectively with a
wide operating envelope of aero-engines. In addition, there existed obviously different
alterations between the original and adapted curves. Such a difference was caused by two
main aspects: (a) the reduction in performance deviations with benchmark data through
adaptation and (b) the elliptic fitting to construct smooth and logical shapes for the speed
lines. In sum, the quantification and regression of the shift of the compressor map were
realized. Figures 21 and 22 present the comparison of three training algorithms at the
convergence velocity and computational accuracy, respectively. Due to the difference in
weight and threshold values of the three algorithms during the adaptation process, the
training procedure in Figure 21 was selected in the first adaptation iteration. It can be
observed that the ADVLBP algorithm had a significant advantage compared with the
other two algorithms. That aside, measurement noise had no noticeable effect on the
MLP NN training, because the UKF could obviously reduce the level of sensor noise as a
filter. Figure 22 illustrates the comparisons of the sum of the RMSEs of each measurement
parameter, which could comprehensively reflect the measurement deviations in each
adaptation iteration. As shown in Figures 21 and 22, the superiority of the ADVLBP
algorithm can be proven.
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5. Conclusions

In this paper, a novel data-driven-based component map generation method was intro-
duced that aimed to improve the accuracy of aero-engine performance prediction in steady
state and transient conditions. An MLP NN integrated into a turbofan traditional CLM was
utilized in simulating the component map instead of conventional interpolation schemes.
In order to minimize measurement deviations between the ICLM and a reference engine,
state deviations can be obtained by appropriate adaptation strategies to directly motivate
the retraining of the compressor NN, realizing the adaptive component map’s generation.

Unlike conventional data-driven-based approaches that rely on abundant rig test data,
which is time-consuming and expensive, the proposed method can effectively improve the
accuracy of the ICLM performance prediction by synthesizing the idea of adaptation based
on an arbitrary existing component map. In addition, the proposed method overcomes the
shortcomings of the commonly used modification method through optimization algorithms
such as accuracy and local optimum, owing to the rapid, reliable and computationally
inexpensive response of the MLP NN.

A series of simulation cases demonstrated that the ADVLBP algorithm has apparent
advantages in convergence and accuracy compared with conventional training algorithms.
The ICLM after adaptation can provide an accurate match to a reference engine according
to corresponding adaptation strategies in steady state and transient conditions. The ICM
can approximate the potential solutions through iterations in multiple off-design points,
and UKF can perform dynamic estimation under the circumstances of noise contamination.
The generated compressor map is fitted in a nonlinear manner to determine the accuracy of
the ICLM in the entire operating envelope. Therefore, the implementation of the proposed
adaptation method can enhance the understanding of the aero-engine’s dynamic behavior,
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which exhibits the adequate capacity to realize component map generation in practical
engineering applications.
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