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Abstract: Vibration-based damage assessment technology is a hot topic in aerospace engineering,
civil engineering, and mechanical engineering. In this paper, a damage assessment approach using
multiple-stage dynamic flexibility analysis is proposed for structural safety monitoring. The proposed
method consists of three stages. The content of Stage I is to determine the number of damaged
elements in the structure by the rank of dynamic flexibility change. The content of Stage II is to
determine damage locations by the minimum rank of flexibility correlation matrices. Finally, the
damage extents of those damaged elements are calculated in Stage III. The proposed approach fully
uses the filtering ability of matrix rank analysis for data noise. A 27-bar truss structure and a steel
frame structure are used as the numerical and experimental examples to demonstrate the proposed
method, respectively. From the numerical and experimental results, it is found that structure damages
can be successfully identified through the multiple-stage dynamic flexibility analysis. By comparative
study, the proposed method has more powerful antinoise ability and higher calculation accuracy
than the generalized flexibility method. The proposed method may be a promising tool for structural
damage assessment.

Keywords: damage assessment; dynamic flexibility; matrix rank; correlation analysis; structures

1. Introduction

Structural damage assessment based on vibration parameters is a frontier topic for
many engineering fields, such as aerospace engineering, civil engineering, and mechanical
engineering, among others. Structural damage will lead to the deterioration of structural
mechanical properties. As a result, the vibration parameters of the structure change
with the evolution of structural damage. Therefore, structural damage condition can be
evaluated in turn by the changes of structural vibration parameters. Common vibration
parameters include velocity, acceleration, natural frequency, frequency response function,
mode shape, dynamic flexibility, and so on. Recently, many vibration-based methods [1–4]
have been proposed for structural damage assessment. The following literature review on
vibration-based damage assessment can be divided into two parts: theoretical research and
engineering application.

In the aspect of theory research, Vestroni and Capecchi [5] used the natural frequency
to detect damages in the beam structures. A linear behavior is assumed before and after the
damage. Kessler et al. [6] carried out the theoretical and experimental studies on frequency-
based damage detection in composite materials. It was found that the frequency response
method is reliable for identifying the damage in the experimental structure. Hwang and
Kim [7] used the frequency response data to determine the damage location and extent in
the structure by minimizing the difference between measured and analytic data. Limon-
gelli [8] improved the frequency-based method for damage detection by considering the
environmental temperature change. Bandara et al. [9] combined the frequency response
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function with the artificial neural network to identify the nonlinear damages in the struc-
tures under a known level of excitation. Sha et al. [10] proposed using relative natural
frequency change curves for damage localization. Their algorithm can complete the task
of damage identification only using the measured natural frequencies. Kim et al. [11]
compared the mode-shape-based method with the frequency-based method in structural
damage identification. The results show that the two methods are both feasible for crack
detection of beam structures. Qiao et al. [12] used the curvature mode shape to detect the
damage locations in composite laminated plates. Yazdanpanah1a and Seyedpoor [13] pro-
posed a new damage indicator by simultaneously using the mode shape, mode shape slope,
and mode shape curvature. Rucevskis et al. [14] defined a new damage index by using the
absolute variation between the tested curvature of the defective system and the analytical
curvature of the intact system. Umar et al. [15] presented a new response surface methodol-
ogy for damage detection by using both natural frequencies and mode shapes. Using the
frequency-response-function measurements, Catbas et al. [16] constructed the modal flexi-
bility for detecting structural damages. For cantilever beam-type structures, Sung et al. [17]
presented a novel damage identification method by using the damage-induced interstory
deflection obtained by modal flexibility matrix. Using the modal flexibility, Grande and
Imbimbo [18] presented a fusion algorithm based on the Dempster–Shafer evidence theory
for structural damage identification. The results show that the proposed method can carry
out damage identification with only a few measuring points. Wickramasinghe et al. [19]
proposed the vertical damage index and lateral damage index based on modal flexibility to
identify the damages in cables and hangers of a suspension bridge. It was found that the
damage indexes presented can identify the defects in real suspension bridges using only
the first few modes. Based on modal flexibility, Li et al. [20] proposed the generalized flexi-
bility method for structural damage assessment. The advantage of generalized flexibility
is that the negative effect of truncating higher-order modes in damage detection can be
significantly reduced. Recently, Liu et al. [21,22] further extended the generalized flexibility
method for damage assessment by considering the value range of the damage extent and
the incompleteness of the measured mode shapes.

In the aspect of engineering application, Maizuar et al. [23] proposed a bridge condition
assessment technique based on noncontact radar sensors (IBIS-S) to obtain the relationship
between frequency changes and structural damage. A prestressed concrete bridge in
Australia is used as a case study to demonstrate their method. It was found that vibration
monitoring can indicate the stiffness degradation of elastomeric bearing and shear crack
propagation in the support areas. Alani et al. [24] developed a bridge health monitoring
technique by comparisons between the calculated data of finite element model and the field
data collected from the IBIS-S sensor system. Their method was successfully performed on
a rather heavily used bridge in Chatham, Kent, UK. Raja et al. [25] proposed the assessment
method for bridge bearing condition, which integrated the vibration data from the IBIS-S
sensor system and a simplified analytical model. Using two existing concrete bridges in
Australia as the case study, it was shown that their method can detect the bridge-bearing
condition in real-time. Li et al. [26] used an accelerometer to collect the dynamic response of
a platform in the Shengli oilfeld of Dongying in the event of a ship collision. By analyzing
the platform dynamic responses, it was found that there is a significant correlation between
external load and structural vibration. Zini et al. [27] proposed a numerical model to
design the optimal sensor position of long-term structural monitoring for the San Niccolò
gate in Florence (Italy). Aminullah et al. [28] studied optimal sensor placement for the
structural health monitoring system of Soekarno Bridge in Manado, Indonesia. It was
found that the optimal number of accelerometers for the Soekarno Bridge deck is four
placed along the bridge deck. Cocking et al. [29] carried out vibration monitoring of a
skewed masonry arch railway bridge in the UK by using the comprehensive structural
health monitoring system. It was found that the dynamic responses are sensitive to the
time of day, which is a proxy for passenger loading, train speed, and temperature. Nguyen
et al. [30] proposed a vibration-based algorithm to evaluate the health of Saigon Bridge
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in Ho Chi Minh City, Vietnam, by changes in the material mechanical parameters. It was
shown that the data collected by more than 100 sensors can evaluate the structure’s health
condition. Capilla et al. [31] developed a structural health monitoring system to monitor
the ambient vibration of monopole communication structures in the UK. The analysis of
the measured data revealed the nonlinear stiffness behavior, the existence of aerodynamic
damping, and typical directionality of the mode shapes.

Although significant progress has been made in the latest decades, there are still
opportunities for the research of structural damage assessment. The existing damage
identification technology often adopts the reverse calculation method, which leads to
poor antinoise performance. The internal relationship between structural damage and
structural dynamic characteristic parameters needs to be further explored. In view of this,
a multiple-stage dynamic flexibility analysis approach is proposed in this paper to assess
structural damages in three stages. The proposed method initially uses rank analysis as
a means to judge the occurrence and location of structure damage. It is found that the
rank of dynamic flexibility change before and after damage can indicate the number of
damaged elements. The minimum rank for the flexibility correlation matrices can indicate
the location of damaged elements. With damaged elements determined in advance, the
evaluation of damage extent becomes very simple. The whole method makes full use of the
filtering ability of matrix rank analysis for data noise, so it has powerful antinoise ability
and high accuracy in damage assessment calculation. The general framework of this work
follows. Section 2 describes the proposed damage assessment technology in three stages.
The truss structure is used as a numerical example to demonstrate the proposed method
in Section 3. Section 4 presents the damage assessment results for an experimental frame
structure using the proposed method. Finally, the conclusions of this work are summarized
in Section 5.

2. Theoretical Development

As is well known, the main objectives of structural damage assessment usually include
the following three aspects: judging whether damage occurs, determining the location of
damage, and evaluating the severity of damage. To this end, a multiple-stage dynamic flex-
ibility analysis is proposed in this work to complete the corresponding damage assessment
objectives.

2.1. Stage I: Judging Whether Damage Occurs by the Rank Analysis of Dynamic Flexibility Change

In finite element model (FEM) theory, it is well known that the stiffness matrix and
flexibility matrix are inverse matrices to each other, that is

K−1 = Θ (1)

K−1
d = Θd (2)

where K and Θ are the stiffness and flexibility matrices for the intact structure, and Kd
and Θd are the stiffness and flexibility matrices for the defective structure. In general, the
damage in the structure leads to decreased stiffness and increased flexibility. Therefore, the
stiffness and flexibility changes before and after damage can be expressed as:

∆K = K− Kd (3)

∆Θ = Θd −Θ (4)

where ∆K and ∆Θ are the changes of the stiffness and flexibility matrices. From Equations
(3) and (4), one has

Θ · ∆K = Θ · (K− Kd) = Ie −Θ · Kd (5)

∆Θ · Kd = (Θd −Θ) · Kd = Ie −Θ · Kd (6)
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where Ie is the identity matrix. From Equations (5) and (6), one can obtain

Θ · ∆K = ∆Θ · Kd (7)

From Equation (7), the rank of ∆K should equal the rank of ∆Θ because Θ and Kd are
full-rank matrices, that is

Rank(∆K) = Rank(∆Θ) (8)

Equation (8) reveals that the damage in the structure is intrinsically related to the rank
of the flexibility change; the greater the number of damaged elements in the structure, the
greater the rank of the flexibility matrix change. According to the matrix theory, the rank of
∆Θ can be determined by the number of the nonzero eigenvalues of ∆Θ. The eigenvalue
decomposition of ∆Θ can be expressed as

∆Θ = ΠΛΠT (9)

Λ =


δ1

. . .
δi

. . .

 (10)

where δi is the ith eigenvalue of ∆Θ, Π is the corresponding eigenvector matrix. From
vibration modal test, ∆Θ can also be approximately obtained by the low-order vibration
eigenpairs as

∆Θ =
m

∑
j=1

(
ξdjξ

T
dj

f 2
dj
−

ξ jξ
T
j

f 2
j

) (11)

where f j and ξ j are the natural frequency and mode shape of the intact structure, fdj and ξdj
are the natural frequency and mode shape of the defective structure, and m is the number
of testing modes. When the approximate ∆Θ is used, the rank of ∆Θ should be determined
by the number of the relatively large eigenvalues since the small eigenvalues of ∆Θ usually
reflect the data noise in practice. It is generally recognized that the eigenvalue whose ratio
to the maximum eigenvalue is less than 5% can be regarded as 0 for the rank judgment of
∆Θ. This principle is used in the rank judgment of ∆Θ for the following numerical and
experimental examples.

From the derivation above, Stage I includes the following contents: (1) perform
structural modal test to obtain the natural frequency and mode shape before and after
damage; (2) calculate ∆Θ by Equation (11); (3) determine the rank of ∆Θ by using Equations
(9) and (10). Rank(∆Θ) 6= 0 indicates that the damage occurs in the structure; the larger the
∆Θ rank, the more damaged elements in the structure.

2.2. Stage II: Determining Damage Locations by the Minimum Rank of Flexibility
Correlation Matrices

From Equation (7), one can obtain

∆Θ = Θ · ∆K ·Θd (12)

From Equations (4) and (12), one has

∆Θ = Θ · ∆K ·Θ + Θ · ∆K · ∆Θ (13)

In Equation (13), ∆Θ caused by structural damage is often a small variation of Θ. Thus
Equation (13) can be approximated by ignoring the second-order product Θ · ∆K · ∆Θ as

∆Θ = Θ · ∆K ·Θ (14)
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Note that the approximate operation above is commonly used in the existing flexibility-
based methods [16–22]. According to FEM theory, the total change ∆K can be expressed as
the sum of elementary stiffness changes

∆K =
N

∑
i=1

εiKi, (0 ≤ εi ≤ 1) (15)

Ki = TiKe
i TT

i (16)

where Ki and Ke
i are the ith elementary stiffness matrices in the global and local coordinate

systems, respectively. Ti is the corresponding transform matrix between the global coordi-
nate system and the local coordinate system. εi is the perturbation coefficient caused by
damage. N is the number of elements in FEM. Substituting Equation (15) into (14) yields

∆Θ =
N

∑
i=1

εi · Hi (17)

Hi = Θ · Ki ·Θ (18)

where Hi is defined as the ith elementary flexibility matrix. Let

∆Θ = [θ1, θ2, · · · , θj, · · · ] (19)

Hi = [hi1, hi2, · · · , hij, · · · ] (20)

where θj is the jth column vector of ∆Θ (θj is called as flexibility change vector), hij is the
jth column vector of Hi (hij is called as elementary flexibility vector). From Equations (17),
(19), and (20), one has

θj =
N

∑
i=1

εi · hij (21)

Usually, structural damage only occurs in a small part of the structure. This means
that εi = 0 is valid for most elements of the structure. Without loss of generality, Equation
(21) can be simplified by only retaining the damaged elements as

θj = ε1h1j + · · ·+ εrhrj (22)

where r is the number of the damaged elements determined by Stage I. Equation (22)
reveals that the flexibility change vector θj is a linear combination of the flexibility vectors
hij for the damaged elements. In other words, the correlation between θj and the flexibility
vectors hij of the damaged elements is the highest. This principle can be used to determine
the damage locations in the structure. Letting

Ψ = [θj, h1j, · · · , hrj] (23)

the correlation coefficient can be calculated using the column rank of the flexibility correla-
tion matrix Ψ as

co = Rank(Ψ)column (24)

Since the damage locations are unknown in advance, r elementary flexibility vectors
are taken successively to calculate the correlation coefficient by Equation (24). The minimum
value of all the calculated column ranks corresponds to the damaged elements (damage
locations) in the structure. According to the matrix theory, the rank of Ψ can be determined
by the number of the nonzero singular values of Ψ. In practice, the rank of Ψ should
be determined by the number of the relatively large singular-values since that the small
singular values of Ψ usually reflect the data errors. For convenience, the ratio of singular
values of the flexibility correlation matrix Ψ can be used as the index of damage location.
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As illustrated in the following examples, the damage location can be determined by the
minimum value in the singular-value ratio graph for the flexibility correlation matrices.

From the above derivation, Stage II includes the following contents: (1) calculate the
elementary flexibility matrix Hi by Equation (18); (2) construct the correlation matrix Ψ
using Equation (23) by successively taking r elementary flexibility vectors; (3) calculate
the singular values of the flexibility correlation matrix Ψ; (4) draw the singular-value ratio
graph and determine the damage locations by the minimum value in the ratio graph.

2.3. Stage III: Quantifying Damage Extent

When damage locations are determined by Stage II, the damage coefficients εi of the
damaged elements can be easily calculated from Equation (22) as

{ε} = H+
r · θj (25)

{ε} = (ε1, · · · , εr)
T (26)

Hr = [h1j, · · · , hrj] (27)

where the superscript “+” denotes the Moore–Penrose inverse.
Finally, to describe the damage assessment process more clearly, the flow chart of the

complete method is presented in Figure 1.
Aerospace 2022, 9, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 1. The flow chart of the complete method. 

3. Numerical Example 
A numerical example as shown in Figure 2 is used to demonstrate the proposed 

method. The structure is composed of 27 steel bars. The physical parameters of the ma-
terial are: elastic modulus 200 GPa, density 7800 kg/m3, cross-sectional area 1.759×10−4 m2. 
Structural damage is simulated by assuming elastic modulus reduction in the steel bars. 
Two damage conditions are considered in this example. The first is a single damage 
condition, in which element 10 is damaged with 15% elastic modulus reduction. The 
second is the multiple damage condition in which elements 14 and 19 are damaged with 
15% and 20% elastic modulus reductions, respectively. The natural frequencies and mode 
shapes before and after damage are simulated by structural FEM vibration analysis. Ta-
ble 1 presents the first five natural frequencies without noise for the undamaged and 
damaged status.  

 
Figure 2. Numerical model of the 27-bar truss structure. 

Table 1. Natural frequencies without noise for the undamaged and damaged structures (unit: Hz). 

Frequency Number Undamaged Single Damage Multiple Damage 
1 43.4 43.0 42.9 
2 109.7 108.8 109.5 
3 150.9 150.9 150.6 
4 257.7 257.4 252.9 
5 338.9 337.5 336.7 

3.1. Single Damage Condition 

Figure 1. The flow chart of the complete method.

3. Numerical Example

A numerical example as shown in Figure 2 is used to demonstrate the proposed
method. The structure is composed of 27 steel bars. The physical parameters of the
material are: elastic modulus 200 GPa, density 7800 kg/m3, cross-sectional area 1.759 ×
10−4 m2. Structural damage is simulated by assuming elastic modulus reduction in the
steel bars. Two damage conditions are considered in this example. The first is a single
damage condition, in which element 10 is damaged with 15% elastic modulus reduction.
The second is the multiple damage condition in which elements 14 and 19 are damaged
with 15% and 20% elastic modulus reductions, respectively. The natural frequencies and
mode shapes before and after damage are simulated by structural FEM vibration analysis.
Table 1 presents the first five natural frequencies without noise for the undamaged and
damaged status.
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Table 1. Natural frequencies without noise for the undamaged and damaged structures (unit: Hz).

Frequency Number Undamaged Single Damage Multiple Damage

1 43.4 43.0 42.9
2 109.7 108.8 109.5
3 150.9 150.9 150.6
4 257.7 257.4 252.9
5 338.9 337.5 336.7

3.1. Single Damage Condition

Using the exact modal data, the eigenvalues of ∆Θ for the single damage case can

be calculated as: 1.211 × 10−7,
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. It was found that only the first eigenvalue is
nonzero. Thus, the rank of ∆Θ can be determined as 1 for this damage case. It can be judged
in Stage I that only one bar is damaged. Subsequently, Table 2 presents the singular-values
of Ψ for each element in Stage II. The identified column ranks for each element are also
given in Table 2. Note that element 10 corresponds to the minimum column rank. Therefore,
it can be judged in Stage II that only the tenth bar is damaged. From Table 2, the ratio
of the second singular value to the first singular value can also be used to determine the
damage locations more conveniently. Taking the element number as the abscissa and the
corresponding ratio as the ordinate, Figure 3 presents the ratio graph of singular values
in Table 2. It can be seen from Figure 3 that element 10 corresponds to the minimum ratio
of 0. This also means that element 10 is the damaged bar in the structure. Finally, the
damage extent can be calculated in Stage III as ε10 = 17.65%, which is very close to the true
value, 15%.
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Figure 3. The singular-value ratio graph obtained by Table 2 when element 10 is damaged (no noise).

Next, the random noise is added in the exact data to simulate the measurement errors
in engineering practice. The formula for adding noise follows

f = f × (1 + γ · uni f rnd[−1, 1]) (28)

ξ = ξ × (1 + γ · uni f rnd[−1, 1]) (29)
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where f and ξ are the contaminated frequency and mode shapes with noise, γ is the
noise level, and uni f rnd[−1, 1] is a random number in the interval [−1, 1]. Moreover, the
proposed method is compared with the generalized flexibility method [20–22] by using
the same contaminated data. To this end, the main formulas of the generalized flexibility
method [20–22] are briefly reviewed as follows.

Table 2. The singular-values of the flexibility correlation matrix for each element.

Element Number Singular-Values (×10−6) Identified Column Rank

1 0.0173, 0.0068 2
2 0.1009, 0.0111 2
3 0.0171, 0.0059 2
4 0.0174, 0.0063 2
5 0.0168, 0.0054 2
6 0.0987, 0.0057 2
7 0.0164, 0.0053 2
8 0.0333, 0.0093 2
9 0.0161, 0.0054 2
10 0.0912, 0.0000 1
11 0.0159, 0.0055 2
12 0.0561, 0.0097 2
13 0.0159, 0.0053 2
14 0.0726, 0.0049 2
15 0.0160, 0.0049 2
16 0.0739, 0.0106 2
17 0.0162, 0.0045 2
18 0.0477, 0.0075 2
19 0.0164, 0.0043 2
20 0.0775, 0.0117 2
21 0.0167, 0.0045 2
22 0.0243, 0.0084 2
23 0.0169, 0.0050 2
24 0.0170, 0.0073 2
25 0.0171, 0.0059 2
26 0.0160, 0.0025 2
27 0.0173, 0.0069 2

First, the generalized flexibility Θg and its sensitivity to the perturbation coefficient εi
are given as

Θg = Θ ·M ·Θ (30)

∂Θg

∂εi
= ΘKiΘMΘ + ΘMΘKiΘ (31)

where M is the mass matrix of structural FEM. Similar to Equation (11), the generalized
flexibility change ∆Θg before and after damage can also be approximately obtained by the
low-order vibration eigenpairs as

∆Θg =
m

∑
j=1

(
ξdjξ

T
dj

f 4
dj
−

ξ jξ
T
j

f 4
j

) (32)

Comparing Equations (11) and (32), note that the power of frequencies for the gen-
eralized flexibility is 4 and the power of frequencies for the ordinary flexibility is 2. This
difference gives the generalized flexibility method the advantage that the adverse effect of



Aerospace 2022, 9, 295 9 of 18

truncating higher-order modes can be reasonably reduced. On the other hand, the general-
ized flexibility change ∆Θg can be expressed by the first-order Taylor’s series expansion as

∆Θg =
N

∑
i=1

εi ·
∂Θg

∂εi
(33)

From Equation (33), the damage parameters εi( i = 1 ∼ N) can be calculated by solving
the linear system of Equation (33). According to the calculated εi, damage locations and
extents can be determined by the generalized flexibility method.

Using the contaminated data, Figure 4 presents the calculated damage extents by the
generalized flexibility method for 5% and 10% noise levels, respectively. For comparison,
Table 3 provides the damage assessment results by the proposed method.

Aerospace 2022, 9, x FOR PEER REVIEW 10 of 19 
 

 


= ∂

Θ∂
⋅=ΔΘ

N

i i

g
ig

1 ε
ε  (33)

From Equation (33), the damage parameters iε ( Ni ~1= ) can be calculated by 

solving the linear system of Equation (33). According to the calculated iε , damage loca-
tions and extents can be determined by the generalized flexibility method. 

Using the contaminated data, Figure 4 presents the calculated damage extents by the 
generalized flexibility method for 5% and 10% noise levels, respectively. For comparison, 
Table 3 provides the damage assessment results by the proposed method. 

 
Figure 4. The calculated damage extents by the generalized flexibility method when element 10 is 
damaged. 

In Figure 4, the calculated damage extents of element 10 by the generalized flexibil-
ity method are 10ε =17.76% (5% noise level) and 10ε =19.49% (10% noise level). Note that 
element 10 can be determined as the most possible damaged element since it has the 
largest value among the calculated damage extents in Figure 4. However, several other 
elements are misjudged as the damaged elements because they also have relatively large 
values among the calculated damage extents. Generally, the element can be determined 
as the possible damaged element if its calculated damage extent is greater than 0.05. 
From Figure 4, when 5% noise level is considered, element 24 is misjudged as the dam-
aged element since its calculated damage extent is 24ε =11.63%. When 10% noise is con-
sidered, elements 12, 15, 21, 23, and 24 are misjudged as the damaged elements since their 
calculated damage extents are 12ε =6.1%, 15ε =5.12%, 21ε =10.67%, 23ε =5.99%, and 

24ε =5.56%. These results show that the generalized flexibility method is prone to mis-
judgment with the increase in noise level. In table 3, it can be judged by the proposed 
method that element 10 is the only damaged element for both noise levels. This means 
that the proposed method has better antinoise ability than the generalized flexibility 
method since the misjudgment is avoided. The calculated damage extents of element 10 
by the proposed method are 10ε =18.87% (5% noise level) and 10ε =20.32% (10% noise 
level), which are close to the true value of 15%. Note that the reason for the deviation 
between the calculated value and the true value of damage extent lies in two aspects. One 
is the data noise. The other is the operation of ignoring the second-order product in 
Equation (13). 

 

 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Element number

D
am

a
g
e
 e

x
t
e
n
t

5% noise

10% noise

Figure 4. The calculated damage extents by the generalized flexibility method when element 10
is damaged.

In Figure 4, the calculated damage extents of element 10 by the generalized flexibility
method are ε10 = 17.76% (5% noise level) and ε10 = 19.49% (10% noise level). Note that
element 10 can be determined as the most possible damaged element since it has the
largest value among the calculated damage extents in Figure 4. However, several other
elements are misjudged as the damaged elements because they also have relatively large
values among the calculated damage extents. Generally, the element can be determined as
the possible damaged element if its calculated damage extent is greater than 0.05. From
Figure 4, when 5% noise level is considered, element 24 is misjudged as the damaged
element since its calculated damage extent is ε24 = 11.63%. When 10% noise is considered,
elements 12, 15, 21, 23, and 24 are misjudged as the damaged elements since their calculated
damage extents are ε12 = 6.1%, ε15 = 5.12%, ε21 = 10.67%, ε23 = 5.99%, and ε24 = 5.56%.
These results show that the generalized flexibility method is prone to misjudgment with
the increase in noise level. In Table 3, it can be judged by the proposed method that element
10 is the only damaged element for both noise levels. This means that the proposed method
has better antinoise ability than the generalized flexibility method since the misjudgment is
avoided. The calculated damage extents of element 10 by the proposed method are ε10 =
18.87% (5% noise level) and ε10 = 20.32% (10% noise level), which are close to the true value
of 15%. Note that the reason for the deviation between the calculated value and the true
value of damage extent lies in two aspects. One is the data noise. The other is the operation
of ignoring the second-order product in Equation (13).
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Table 3. The damage assessment results by the proposed multiple-stage dynamic flexibility analysis
method when element 10 is damaged.

5% Noise Level 10% Noise Level

Stage I:
(1) The eigenvalues of ∆Θ can be calculated as:
0.6228 × 10−7, 0.0076 × 10−7, 0.0025 × 10−7,

0.0006 × 10−7, 0, 0, . . . . (2) The rank of ∆Θ can
be determined as 1 due to 0.0076/0.6228 =

1.22% < 5%. (3) It can be judged that only one
element is damaged.

Stage I: (1) The eigenvalues of ∆Θ can be
calculated as: 0.6324 × 10−7, 0.0142 × 10−7,

0.0090 × 10−7, 0.0034 × 10−7, 0, 0, . . . . (2) The
rank of ∆Θ can be determined as 1 due to
0.0142/0.6324 = 2.25% < 5%. (3) It can be

judged that only one element is damaged.

Stage II:
(1) The ratio graph of sin-

gular values for the correlation matrices follows:
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(2) Element 10 can be determined as the
damaged bar according to the minimum value

in the ratio graph.

Stage II:
(1) The ratio graph of singular values for the

correlation matrices follows:
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(2) Element 10 can be determined as the
damaged bar according to the minimum value

in the ratio graph.

Stage III:The damage extent can be calculated
as ε10 = 18.87%.

Stage III:The damage extent can be calculated
as = 20.32%.

3.2. Multiple Damage Condition

For the multiple damage condition, the eigenvalues of ∆Θ can be calculated by the

simulated modal data without noise as: 1.34× 10−7, 0.076× 10−7,
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. It was found
that the first two eigenvalues are nonzero. Thus, the rank of ∆Θ can be determined as 2 for
this damage case. It can be judged in Stage I that two bars were damaged. Subsequently, the
singular-values of Ψ for every possible element combination can be computed in Stage II.
Given space limitations, Table 4 presents the singular-values of some element combinations
and the corresponding identified column ranks. From Table 4, the ratio of the third singular
value to the first singular value can also be used to determine the damage locations more
conveniently. Taking the element combination as the abscissa and the corresponding ratio
as the ordinate, Figure 5 presents the ratio graph of singular values in Table 4. It can be seen
from Figure 5 that the combination of elements 14 and 19 corresponds to the minimum
ratio of 0. Therefore, it can be judged in Stage II that elements 14 and 19 are both damaged.
Finally, the damage extents can be calculated in Stage III as ε14 = 17.65% and ε19 = 25.0%,
which are close to the true values, 15% and 20%.
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Table 4. The singular-values of the flexibility correlation matrix for some element combinations.

Element Combination Singular-Values (×10−7) Identified Column Rank

1 and 2 1.006, 0.133, 0.058 3
3 and 5 0.1648, 0.0633, 0.0322 3
4 and 6 0.9844, 0.0889, 0.0577 3
7 and 8 0.3307, 0.0795, 0.0439 3

14 and 19 0.7249, 0.0446, 0.0000 2
19 and 24 0.1604, 0.0685, 0.0336 3
19 and 26 0.1464, 0.0404, 0.0196 3
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Figure 5. The singular-value ratio graph obtained by Table 4 when elements 14 and 19 are damaged
(no noise).

When 5% and 10% data noise are considered, Figure 6 presents the calculated damage
extents by the generalized flexibility method. For comparison, Table 5 provides the damage
assessment results by the proposed method.
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Figure 6. The calculated damage extents by the generalized flexibility method when elements 14 and
19 are damaged.

In Figure 6, the calculated damage extents of elements 14 and 19 by the generalized
flexibility method are ε14 = 17.75% and = 50.69% (5% noise level), and ε14 = 18.87% and
= 59.08% (10% noise level). Note that elements 14 and 19 can be determined as the most
possible damaged elements since they have the larger values among the calculated damage
extents shown in Figure 6. However, several other elements are misjudged as the damaged
elements because they also have relatively large values among the calculated damage
extents. From Figure 6, when 5% noise level is considered, elements 1, 5, 9, 13, and 20
are misjudged as the damaged elements since their calculated damage extents are ε1 =
15.28%, ε5 = 13.82%, ε9 = 9.33%, ε13 = 7.89%, and ε20 = 5.15%. When 10% noise is considered,
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elements 1, 5, 11, 13, and 20 are misjudged as the damaged elements since their calculated
damage extents are ε1 = 6.9%, ε5 = 13.93%, ε11 = 9.47%, = 15.17%, and ε20 = 6.36%. These
results again show that the generalized flexibility method is prone to misjudgment with
the increase in noise level. In Table 5, it can be judged by the proposed method that only
elements 14 and 19 are the two damaged elements for both noise levels. This once again
shows that the proposed method has good anti-noise ability. The calculated damage extents
by the proposed method are ε14 = 18.34% and ε19 = 24.92% (5% noise level), and ε14 =
17.64% and ε19 = 34.71% (10% noise level). It is clear that the damage extents calculated by
the proposed method are closer to the true values (15% and 20%) than those calculated by
the generalized flexibility method.

Table 5. The damage assessment results by the proposed multiple-stage dynamic flexibility analysis
method when elements 14 and 19 are damaged.

5% Noise Level 10% Noise Level

Stage I:
(1) The eigenvalues of ∆Θ can be calculated as:
0.6508 × 10−7, 0.0355 × 10−7, 0.0043 × 10−7,

0.0032 × 10−7, 0, 0, . . . . (2) The rank of ∆Θ can
be determined as 2 due to 0.0355/0.6508 =

5.45% > 5% and 0.0043/0.6508 = 0.66% < 5%.
(3) It can be judged that two elements are

damaged.

Stage I:
(1) The eigenvalues of ∆Θ can be calculated as:
0.6444 × 10−7, 0.0384 × 10−7, 0.0095 × 10−7,

0.0071 × 10−7, 0, 0, . . . . (2) The rank of ∆Θ can
be determined as 2 due to 0.0384/0.6444 =

5.96%>5% and 0.0095/0.6444 = 1.47% < 5%. (3)
It can be judged that two elements are

damaged.
Stage II:

(1) The ratio graph of sin-
gular values for the correlation matrices follows:
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(2) Elements 14 and 19 can be determined as
the damaged bars according to the minimum

value in the ratio graph.
Stage III:

The damage extents can be calculated as ε14 =
18.34% and ε19 = 24.92%.

Stage III:
The damage extents can be calculated as ε14 =

17.64% and ε19 = 34.71%.

For this numerical example, the results show that the generalized flexibility method
misjudges the damaged elements, but the proposed method accurately identifies structural
damages when the data contain noise. The average calculation error of this method is
reduced to about one-third of that of the generalized flexibility method. It was shown that
the calculation reliability and accuracy of this method are both higher than those of the
generalized flexibility method.

4. Verification by the Experimental Data of Reference

The damage assessment technique presented is further validated using the experi-
mental modal data of a three-floor steel frame structure, conducted by Li in reference [32].
The structural dimensions and damage cases can be seen in reference [32] or in Figure 7.
As shown in Figure 7, the main components of this experimental structure are three steel
plates and four rectangular columns. Plates and columns are rigidly connected by welding.
Structural damages were produced by cutting part of the steel columns for the first and
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second story. For damage case 1, the width of the cross-section at the column bottom
of the first floor is reduced by cutting from 75 to 51.3 mm. Using the cross-section size
after cutting, the story stiffness of the first floor is calculated and compared with the story
stiffness before cutting. Then, the damage extent for damage case 1 can be obtained as
about 11.6% by the ratio of the story stiffness before and after cutting. For damage case
2, the widths of the cross-sections at the column bottoms for the first and second floors
are both reduced by cutting from 75 to 37.46 mm. The corresponding damage extents for
damage case 2 can also be calculated as about 21.1% by the ratio of the story stiffness before
and after cutting. The intact and damaged models were placed on a shaking table to test
the dynamic characteristics. The shaking table produced white noise in the frequency range
1–30 Hz in the X direction. The peak acceleration of the excitation was taken as 0.05 g. The
duration of the excitation was 180 s. The B&K 4370 acceleration sensors were set at each
floor to measure the accelerations in the X direction. The time signals were sampled at 300
Hz and modulated by the B&K 2635. Using the Structural Vibration Solutions ARTeMIS
software, the time signals obtained were analyzed by the frequency domain decomposition
method to obtain the three natural frequencies of the frame model. Tables 6–8 present the
testing modal data in reference [32] for the undamaged and damaged structures.

Table 6. Experimental modal data for the undamaged structure.

Mode Number Natural Frequency Mode Shape

1 f1 = 3.369 ξ1 = (0.02118,0.03922,0.048427)T.

2 f2 = 9.704 ξ2 = (0.048758,0.02031,-0.03923)T

3 f3 = 14.282 ξ3 = (0.037936,-0.04866,0.022852)T
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Figure 7. Experimental model of a three-floor steel frame structure. (a) Schematic diagram of the
experimental structure in reference [32]; (b) Damage case 1: notch by cutting from 75 to 51.3 mm
in the first floor; (c) Damage case 2: notches by cutting from 75 to 37.46 mm in the first and second
floors; (d) Geometric size of the experimental structure.

Table 7. Experimental modal data for damage case 1 (the first floor is damaged by 11.6% stiffness reduction).

Mode Number Natural Frequency Mode Shape

1 f1 = 3.259 ξ1 = (0.022735,0.039331,0.047594)T

2 f2 = 9.485 ξ2 = (0.049417,0.017683,-0.03968)T

3 f3 = 14.209 ξ3 = (0.035798,-0.04982,0.02379)T

Table 8. Experimental modal data for damage case 2 (the first and second floors are both damaged
by 21.1% stiffness reductions).

Mode Number Natural Frequency Mode Shape

1 f1 = 3.003 ξ1 = (0.022172,0.040166,0.047161)T

2 f2 = 9.082 ξ2 = (0.053402,0.012675,−0.03629)T

3 f3 = 13.330 ξ3 = (0.031506,-0.05023,0.028513)T

4.1. Damage Case 1

The damage assessment results obtained by the proposed method and the generalized
flexibility method are both presented in Table 9 for comparison.
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Table 9. The damage assessment results by the proposed method and the generalized flexibility
method for damage case 1 of the experimental structure.

Proposed Method Generalized Flexibility Method

Stage I:
(1) The eigenvalues of ∆Θ can be calculated as:

7.52 × 10−7, -0.274 × 10−7, -0.012 × 10−7.
(2) The rank of ∆Θ can be determined as 1 due
to 0.274/7.52 = 3.64% < 5%. (3) It can be judged

that only one element is damaged.

The damage extent calculated by the
generalized flexibility method follows:
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(2) The first floor can be determined as the
damaged element according to the minimum

value in the ratio graph.
Stage III:

The damage extent can be calculated as ε1 =
13.11%.

The damage extent of the first floor is ε1 =
17.89%.

From Table 9, note that both methods can successfully identify the damage in the first
floor. The damage extent calculated by the proposed method and the generalized flexibility
method are 13.11% and 17.89%, respectively. Compared to the latter, the former is closer to
the true value of 11.6%.

4.2. Damage Case 2

Table 10 presents the damage assessment results by the proposed method and the gen-
eralized flexibility method for damage case 2 of the experimental structure. From Table 10,
it has been shown that both methods can successfully identify the damages in the first and
second floors. Compared with the true values 21.1%, the calculated damage extent by the
proposed method has higher accuracy than those by the generalized flexibility method.
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Table 10. The damage assessment results by the proposed method and the generalized flexibility
method for damage case 2 of the experimental structure.

Proposed Method Generalized Flexibility Method

Stage I: (1) The eigenvalues of ∆Θ can be
calculated as: 2.5344 × 10−6, 0.2196 × 10−6,
−0.01053 × 10−6. (2) The rank of ∆Θ can be

determined as 2 due to 0.2196/2.5344 = 8.66% >
5% and 0.01053/2.5344 = 0.42% < 5%. (3) It can

be judged that two elements are damaged.

The calculated damage extent by the
generalized flexibility method follows:
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floors are ε1 = 43.02% and ε2 = 38.48%.

For damage case 1, the relative errors of the damage extent calculated by the proposed
method and the generalized flexibility method are 13% and 54%, respectively. The calcu-
lation error of this method is reduced to one-fourth of that of the generalized flexibility
method. For damage case 2, the relative errors of the damage extent calculated by the
proposed method and the generalized flexibility method are 59% and 104% for the first
floor, and 27% and 82% for the second floor, respectively. The calculation errors for the
first and second floors by this method are reduced to a half and one-third of those of the
generalized flexibility method. These results show that the calculation accuracy of this
method is significantly higher than that of the generalized flexibility method.

5. Conclusions

In this work, a damage identification algorithm is proposed for detecting structural
damage by using multiple-stage dynamic flexibility analysis. The proposed algorithm can
be divided into three stages. In Stage I, the number of damaged elements in the structure
can be initially determined by the rank of dynamic flexibility change. In Stage II, damage
locations can be determined by the minimum rank of the flexibility correlation matrix.
In Stage III, the damage extent of the damaged elements can be obtained. The proposed
method is verified by a numerical example and an experimental structure. From the
numerical and experimental results, it is found that structure damages can be successfully
identified through multiple-stage dynamic flexibility analysis.

The remarkable advantage of the proposed method is that it can obtain stable and
accurate damage assessment results without misjudgment even if the data contain much
noise. By comparative study, the proposed method performs better than the generalized
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flexibility method in the numerical and experimental examples. It was shown that the
proposed method has powerful antinoise ability in damage assessment. It is noted that
this algorithm may also be applied to assess other damage types such as cracking and
delamination, provided there are observable changes in the dynamic parameters before
and after damage. In addition, it should be pointed out that the proposed method has
the following disadvantages. One is that this algorithm can assess only notable stiffness
decrease in the structure. It is difficult to identify the damage that does not cause a
significant reduction in structural stiffness. The other disadvantage is that nonlinear
vibration is not considered in the proposed method if structural damage is relatively large.
All the theoretical derivation of this work is based on linear structural systems for the intact
and damaged structures. If nonlinear vibration occurs in the structure due to damage,
the proposed method must be improved in some aspects before it can be used. More
theoretical research and engineering applications can be carried out in the future to verify
the applicability of this method to other special damage conditions.
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