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Abstract

New classes of continuous distributions have been generated, in the last decad, based on a
compounding procedure arises on a latent competing risks problem. This procedure assumes the
homogeneity between the population individuals. In this paper, a new lifetime distribution is
generated, assuming the heterogeneity at both population and individual levels, called Extended
Gamma Gompertz (EGG) distribution. This distribution shows very desirable flexibility of its
hazard function. Some properties of the proposed distribution are given. Maximum likelihood
estimation technique is used to estimate the parameters. A simulation study is performed to
examine the performance of the proposed model. Finally, application to a real data set is given
to exemplify the utility of the EGG distribution.
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1 Introduction

Gompertz distribution is a classical mathematical model, introduced by Gompertz [1], plays an
important role in modeling survival times, human mortality and actuarial data. The probability
density function (pdf) of Gompertz distribution is given by

fG(x) = ae−
a
b
(ebx−1)+bx, x > 0, a > 0, b > 0, (1.1)

and its cumulative distribution function (cdf) is

FG(x) = 1− e−
a
b
(ebx−1), x > 0, a > 0, b > 0. (1.2)

An extension of Gompertz distribution has been proposed by El-gohary et al. [2], called generalized
Gompertz (GG) distribution, based on family of distributions given by Lehman alternatives (called
exponentiated type family by Nadarajah and Kotz [3]) considered by Gupta et al. [4]. Jafari et
al. [5] proposed beta Gompertz (BG) distribution using beta generator introduced by Eugene et
al. [6]. Gompertz power series distributions by Jafri and Tahmasebi [7], using the technique of
Marshall and Olkin [8]. Transimuted Gompertz (TG) distribution by Abdul-Moniem and Seham
[9], who considered transmuted generator introduced by Show and Buckley [10]. Roozegar et al.
introduced McDonald Gompertz (McG) distribution [11] based on McDonald generator introduced
by Alexander et al. [12]. Eghwerido et al. [13] proposed alpha power Gompertz distribution based
on alpha power transformation method by Mahdavi and Kundu [14].

This paper aims to utilize two key concepts in survival analysis, namely competing risks problem
and frailty models, to propose new four-parameter distribution. The proposed distribution is called
extended gamma Gompertz (EGG) distribution. An advantage of this model is to consider the
heterogeneity that may appears among population individuals with their frailties described by the
gamma distribution. Furthermore, the number of competing causes is modeled by the geometric
distribution. The EGG distribution has more flexibility compared to Gompertz distribution and
some of its extensions.

The paper is organized as follows: Section 2 discuses briefly the concepts of frailty models and
competing risks problem. Section 3 proposes the EGG distribution. In section 4, Some statistical
and reliability properties of the proposed model are provided. The Maximum Likelihood method
is used to estimate the parameters of the proposed model in section 5. In section 6, Monte Carlo
simulation study is performed to examine the average bias, mean square error, coverage probability
and average confidence width of the maximum likelihood estimates. Finally, an application is given,
to illustrate superiority of the EGG distribution, in section 7.

2 Preliminaries

2.1 Frailty models

Ordinary survival analysis deals with the case of independent and identically distributed data, this
is based on the assumption that the study population is homogeneous, meaning all individuals
have the same risk of death (same frailty). However, it is a basic observation of many areas that
the individuals differ greatly (have different frailties). Thus, in the context of survival analysis,
individuals that have more frail will fail earlier of that have lesser frail. The notion of frailty models
is introduced to assess this heterogeneity in a nice way.

In its simplest form, frailty is an unobserved random factor that modifies the hazard function of an
individual, or of related individuals. The most common frailty model is a model in which the hazard
function is a product of random variable (frailty) and baseline hazard function which is common to
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all individuals. The individual hazard function is defined as

hi (x) = zi h0 (x)

where, zi is a realization of the frailty Z and h0 (x) is the conditional baseline hazard function for
a subject with zi = 1. The conditional survival function for subject i is then given by

Si (x|zi) = e
−zi

x∫
0
h0(s) ds

= e−ziH0(x),

where H0 is the base line cumulative Hazard function. In order to know how the hazard evolves
over time in the population, we need to derive the population survival function by integrating out
the frailty

S (x) =

∞∫
0

e−ZH0(x) fZ (z) dz.

where fZ(z) is the pdf of the frailty random variable Z. For further details and discussions on
frailty models in literature, see for example [15, 16, 17].

2.2 Competing risks

Another key concept arises in survival analysis is competing risks problem, [18]. Simplistically, we
only observe the minimum component lifetime of a series system, which is the cause of failure for the
system. In recent years, new classes of distributions have been generated based on a compounding
procedure inherited from the competing risks problem with its simplest case, [8, 19, 20], etc, in
which the components lifetimes Xi, i = 1, . . . , N , are independent and identically distributed non-
negative continuous random variables with common survival function S(x). Also, N (the number
of components) is zero truncated discrete random variable. Thus, the distribution function of the
new family is the marginal distribution of the first order statistics X(1) = min {Xi : i = 1, . . . , N}
and defined by

F (x) =
n∑
i=1

{1− S(x)n} P {N = n} . (2.1)

The heterogeneity appears in this model at the system level through the unknown number N of
causes of failure of the system. The Xs can be detected only after a component failure, in which
case it is repaired perfectly. Thus, the homogeneity in the model appears at the component level,
in which the components stay in the same condition even after a succession of failures and repairs.

The following section proposes the EGG distribution, on the latent of competing risks problem and
frailty models, so that the compounding procedure (2.1) can accommodate heterogeneity at the
components level, see section 2.

3 The Extended Gamma Gompertz Distribution

Consider Xi, i = 1, . . . , N are independent and identically distributed random variables represent

lifetimes of a series systems components. Let S0 (x) = e−
a
b (e

bx−1), a, b > 0 be a common baseline
Gompertz survival function of Xs, consequently h0 (x) = aebx is the common baseline hazard rate
function and H0 (x) =

a
b

(
ebx − 1

)
is the baseline cumulative hazard function. Also, consider N as

a geometric random variable with probability mass function

P (N = n) = p(1− p)n−1. (3.1)

In the case of a component failure, it can be repaired perfectly, repaired imperfectly or replaced
with a more efficient component (replaced by a technologically more advanced component), [21, 22].
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Therefore, after a succession of failures and repairs of the system’s components, heterogeneity may
appear between them where they exposed to failure differently (have different frailties). In this
case, using the concepts of frailty models, the failure rate of the ith component will be

hi(x|z) = Zih0 (x)

where Zi, i = 1, . . . , N are interpreted as independent and identically distributed random variables.
The value of Zi can be interpreted as: When Zi = 1, the component is repaired perfectly. If Zi > 1,
the component is repaired imperfectly and if Zi < 1, the component is replaced with a more efficient
one. In frailty modelling, the typical choice for the distribution of the frailty Zi is the one parameter
gamma distribution, Gamma(1/θ,1/θ), with pdf given by

fZi (zi) =
1

Γ
(
1
θ

)
θ

1
θ

Zi
1
θ
−1 e−

Zi
θ , (3.2)

where E (Zi) = 1 and V ar (Zi) = θ.

The conditional survival function for the ith component is then given by

Si (x|zi) = e
−Zi

x∫
0
h0(s) ds

= e−ZiH0(x).

Thus, the mixture survival for the ith component is

Si (x) =

∞∫
0

Si (x|zi) fZi (zi) dz = L (H0 (x))

where L (s) = (1 + θ s)−
1
θ is Laplace transform for the gamma pdf (3.2).

Finally, the survival function for the ith component, which is common to all components, is given
by

Si (x) = S (x) =

(
1 +

aθ

b

(
ebx − 1

))− 1
θ

. (3.3)

The survival function (3.3) corresponds to a Gamma Gompertz distribution with pdf given by,

g (x; a, b, θ) = aebx
(
1 +

aθ

b

(
ebx − 1

))− 1
θ
−1

(3.4)

Note that, Gamma Gompertz distribution has been studied as a customer lifetime model with
parameters η = aθ

b
, b and s = 1

θ
, [23].

Using (3.1) and (3.3) in (2.1) we get a four parameter distribution, Extended Gamma Gompertz
(EGG) distribution, with distribution function given by

F (x) = 1− p

{
p∗ +

[
1 +

aθ

b

(
ebx − 1

)] 1
θ

}−1

, x > 0 (3.5)

where a, b, θ, p > 0 and p∗ = p− 1.

So that, the survival and probability density functions are respectively given by

F̄ (x) = p

{
p∗ +

[
1 +

aθ

b

(
ebx − 1

)] 1
θ

}−1

, x > 0 (3.6)
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and

f (x) =
paebx

(
1 + aθ

b

(
ebx − 1

))−1+ 1
θ(

p∗ +
(
1 + aθ

b
(ebx − 1)

) 1
θ

)2 , x > 0 (3.7)

It is very complicated to study the shapes of the pdf is (1) analytically. Whereas, figure 3 shows
the possible shapes of the pdf of EGG distribution. It can be decreasing, unimodal and decreasing-
increasing-decreasing. It is also can be used to model left skewed, right skewed and symmetric data
sets. The EGG distribution can be reduced to the following sub-models:

a 0.01, b 2.5, 0.5, p 3

a 0.1, b 0.8, 0.01, p 10

a 0.2, b 5 , 4 , p 1.7

a 1 , b 1.5, 1.5, p 0.5

a 3 , b 6 , 5 , p 7

Fig. 1. The pdf of EGG distribution, for different values of parameters a, b, θ and p

• When (p = 1), the Gamma Gompetz (GG) distribution is obtained.

• When (a = b and θ = 1) or (θ → 0+ and b→ 0+ ), the Marshall-Olkin extended exponential
(MOE) distribution is obtained, [8].

• When (a = b and θ = p = 1) or (p = 1, θ → 0+ and b→ 0+), the exponential (E) distribution
is obtained.

• When θ → 0+, the Marshall-Olkin extended Gompertz (MOG) distribution is obtained, [7].

• When p=1 and θ → 0+, the Gompertz (G) distribution is obtained.

It worth noted that Mazucheli et al. [24] used the negative exponential function transformation to
proposed unit-Gompertz distribution for modeling data on the unit-interval, (0, 1).

4 Properties

This section investigates some statistical and reliability properties of the EGG distribution.

4.1 Quantiles and mode

The quantile function of EGG is obtained in an explicit form as

Q (u) =
1

b
ln

[
b

a θ

(
u (p− 1) + 1

1− u

)θ
−
(
b− a θ

a θ

)]
; 0 < u < 1 (4.1)

To get the mode of the EGG distribution, first we have to differentiate its pdf with respect to x

f ′ (x) =
f (x)

b+ a θ (eb x − 1)
φ (x)
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where

φ (x) = (p− 1)
(
b+ a

(
eb x − θ

))
+

(
1 +

aθ

b

(
eb x − 1

)) 1
θ (

b− a
(
eb x + θ

))
.

Since f(x)

b+a θ(eb x−1)
> 0, then the mode is the solution of the equation φ (x) = 0 with respect to x.

We have to find that solution numerically using a mathematical package.

4.2 Hazard and reversed rate function

The hazard and reverse hazard functions of the model are given by

h (x) =
aebx(1 + θ a

b

(
ebx − 1

)
)
1
θ
−1

p∗ + (1 + θ a
b
(ebx − 1))

1
θ

(4.2)

and

r (x) =
aebxp(1 + θ a

b

(
ebx − 1

)
)
1
θ
−1

(−1 + (1 + θ a
b
(ebx − 1))

1
θ )(−1 + p+ (1 + θ a

b
(ebx − 1))

1
θ )

(4.3)

where a, b, θ, p > 0 and p∗ = p − 1. The limiting behavior of the hazard function can be readily
established as follows limx→0 h (x) =

a
p
and limx→∞ h (x) = b

θ
.

Fig. 2. shows a very desirable flexibility of the hazard functions in which it shows various shapes
including increasing, decreasing, unimodal, bathtub and increasing-constant shapes which make the
model useful in the real life applications.

a 0.1, b 0.5, 0.01, p 0.01

a 0.5, b 0.5, 0.1, p 0.1

a 1.5, b 1.5, 0.7, p 0.7

a 1.5, b 1 , 1 , p 0.9

a 3 , b 0.3, 0.6, p 7

a 0.1, b 0.5, 0.1, p 0.01

a 0.03, b 0.9, 0.2, p 0.01

a 0.2, b 1.2, 0.6, p 1.5

Fig. 2. Plots of the hazard function for different values of the parameters

4.3 Series representation for survivor and probability density
functions

This section presents expansions of the survivor function and pdf of the EGG distribution. To do
so, the following power series identity is considered

(x+ a)ν =

∞∑
j=0

(
ν
j

)
xjaν−j ,
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where ν is a real number. This bower series converges for ν ≥ 0 an integer(in this case the index j
stopped at ν) , or

∣∣x
a

∣∣ < 1. This general form is given by Graham et al. [25].

The pdf of EGG distribution can be written as an infinite mixture of GG distribution with parameters
a, b and θ. The pdf in (1) can be rewritten as

f (x) =
p aebx

(
1 + aθ

b

(
ebx − 1

))− 1
θ
−1(

1− (1− p)
(
1 + aθ

b
(ebx − 1)

)− 1
θ

)2
Because

∣∣∣(1− p)
(
1 + aθ

b

(
ebx − 1

))− 1
θ

∣∣∣ < 1 given that p ∈ (0, 1), the pdf of the EGG distribution

is reduced to

f (x) = p aebx
∞∑
j=0

(j + 1) (1− p)j
(
1 +

aθ

b

(
ebx − 1

))− j+1
θ

−1

.

Using the pdf of the GG distribution (3.4), the pdf of the EGG distribution can be written as

f (x) = p

∞∑
j=0

(1− p)jg

(
x; a (j + 1) , b,

θ

(j + 1)

)
; p ∈ (0, 1) (4.4)

Various mathematical properties of the EGG distribution can be obtained from Equation (4.4) using
the corresponding properties of the GG distribution.

Furthermore, the survival function (3.6) could be expanded as follows

Case I: for p ∈ (0, 1) , the survival function (3.6) can be written as

F̄ (x) = p

∞∑
k=0

(−1)k (p− 1)k
((

1− aθ

b

)
+
aθ

b
ebx
)−ω

;ω =
k + 1

θ

F̄ (x) = p

∞∑
k=0

∞∑
j=0

(−1)k+j
(
ω + j − 1

j

)
(p− 1)k

(
b

aθ
− 1

)j (
aθ

b

)−ω

e−b(ω+j)x, (4.5)

where p ∈ (0, 1) , ω = k+1
θ

and aθ
b
> 0.5.

Case II: for p > 1, the survival function (3.6) can be written as

F̄ (x) =

(
1 +

aθ

b

(
ebx − 1

))− 1
θ

(
1−

(
p− 1

p

) [
1−

(
1 +

aθ

b

(
ebx − 1

))− 1
θ

])−1

=
(
1 + θ

a

b

(
ebx − 1

))− 1
θ

∞∑
k=0

(
p− 1

p

)k[
1−

(
1 +

aθ

b

(
ebx − 1

))− 1
θ

]k

=

∞∑
k=0

k∑
j=0

(−1)j
(
k
j

)(
p− 1

p

)k ((
1− aθ

b

)
+
aθ

b
ebx
)−ψ

; ψ =
j + 1

θ

Finally,

F̄ (x) =

∞∑
k=0

k∑
j=0

∞∑
l=0

(−1)j+l
(
k
j

) (
ψ + l − 1

l

)(
p− 1

p

)k(
b

aθ
− 1

)l (
aθ

b

)−ψ

e−b(ψ+l)x (4.6)

where p > 1, ψ = j+1
θ

and aθ
b
> 0.5.
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Similarly, the pdf could be represented as

f (x) = p
∞∑
k=0

∞∑
j=0

(−1)k+j
(
ω + j − 1

j

)
(p− 1)k

(
b

aθ
− 1

)j (
aθ

b

)−ω

b (ω + j) e−b(ω+j)x, (4.7)

where p ∈ (0, 1) , ω = k+1
θ

and aθ
b
> 0.5.

and

f (x) =
∞∑
k=0

k∑
j=0

∞∑
l=0

(−1)j+l
(
k
j

) (
ψ + l − 1

l

)(
p− 1

p

)k(
b

aθ
− 1

)l (
aθ

b

)−ψ

b (ψ + l) e−b(ψ+l)x

(4.8)
where p > 1, ψ = j+1

θ
and aθ

b
> 0.5.

4.4 Moments

Many interesting characteristics and features of a distribution can be studied through its moments.
Let X be a random variable following the EGG distribution. The rth ordinary moments of the
random variable X, denoted by µ

′
r, is the expected value of Xr

µ
′
r =

∞∫
0

r xr−1 F̄ (x) dx.

When p ∈ (0, 1), the rth ordinary moments of the random variable X is

µ
′
r = p r

∞∑
k=0

∞∑
j=0

(−1)k+j
(
ω + j − 1

j

)
(p− 1)k

(
b

aθ
− 1

)j (
aθ

b

)−ω∞∫
0

xr−1 e−b(ω+j)x dx.

That is,

µ
′
r =

∞∑
k=0

∞∑
j=0

(−1)k+j
(
ω + j − 1

j

)
(p− 1)k

(
b

aθ
− 1

)j (
aθ

b

)−ω
p r Γ (r)

(b (ω + j))r
, (4.9)

where p ∈ (0, 1), ω = k+1
θ

and Γ (r) =
∞∫
0

ur−1 e−u du, u = b(ω + j)x.

Similarly, when p > 1, the rth ordinary moments of the random variable X is

µ
′
r =

∞∑
k=0

k∑
j=0

∞∑
l=0

(−1)j+l
(
k
j

) (
ψ + l − 1

l

)(
p− 1

p

)k(
b

aθ
− 1

)l (
aθ

b

)−ψ
r Γ (r)

(b (ψ + l))r
(4.10)

where p > 1 and ψ = j+1
θ

.

The rth moment of the EGG distribution could be expressed in terms of the generalized hypergeometric

function PFQ [{a1, . . . , aP} , {b1, . . . , bQ} , z] =
∞∑
j=0

(a1)j .....(aP)j

(b1)j .....(bQ)j

zj

j!
, Abramowitz et al. [26], as

µ
′
r =

∞∑
k=0

(−1)k (p− 1)k
(
aθ

b

)−ω
p θr Γ (r)

br(k + 1)r
GHG (ω, a, b, θ) (4.11)

where p ∈ (0, 1) andGHG (ω, a, b, θ)=(r+1)Fr
({

ω+1
θ
, . . . , ω+1

θ

}
,
{
1 + ω+1

θ
, . . . , 1 + ω+1

θ

}
,
(
1− b

aθ

))
.

Similarly, for p > 1

µ
′
r =

∞∑
k=0

k∑
j=0

(−1)j
(
k
j

) (
p− 1

p

)k (
aθ

b

)−ψ
r Γ (r)

br(1 + j)r
GHG (j, a, b, θ) , (4.12)
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where GHG (j, a, b, θ)=(r+1)Fr
({

j+1
θ
, . . . , j+1

θ

}
,
{
1 + j+1

θ
, . . . , 1 + j+1

θ

}
,
(
1− b

aθ

))
.

Table 1. lists the first four moments, variance, skewness, and kurtosis of the EGG distribution
for various values of the parameter vector θ = (a, b, θ, p). The results we have using the series
representations (4.9)–(4.12) are the same as using the numerical integrations.

Table 1. The first four moments, variance, skewness, and kurtosis of EGG
distribution for different values of parameter vector θ = (a, b, θ, p)

θ µ
′
1 µ

′
2 µ

′
3 µ

′
4 Variance skewness kurtosis

(1.6,0.9,1.4,0.8) 0.9088 2.2972 9.919 59.8826 1.4711 2.8902 15.3242

(2,5,2,3) 0.8442 1.0192 1.5544 2.8622 0.3065 1.0397 4.7652

(5,8,5,7) 1.2828 2.433 5.8343 16.8652 0.7874 0.9918 4.5588

(0.25,1.3,0.08,7) 1.87395 3.8408 8.2985 18.6451 0.3291 -0.7015 3.4298

4.5 Mean residual life

Another aging property for EGG distribution is the mean residual life (mrl). Its defined simply as
the expected additional lifetime given that a component has survived until time t is a function of
t. More specifically, if the random variable X represents the life of a component, then the mean
residual life is given by mrl (t) = E (X − t|X > t), [27].

The mean residual life of the EGG distribution

mrl (t) =E (X − t|X > t) =
1

F̄ (t)

∞∫
t

F̄ (x) dx, t > 0

=
p

F̄ (t)

∞∑
k=0

∞∑
j=0

(−1)k+j
(
ω + j − 1

j

)
(p− 1)k

(
b

aθ
− 1

)j(
aθ

b

)−ω∞∫
t

e−b(ω+j)xdx

=
p

F̄ (t)

∞∑
k=0

∞∑
j=0

(−1)k+j
(
ω + j − 1

j

)
(p− 1)k

(
b

aθ
− 1

)j(
θ
a

b

)−ω e−b(ω+j) t
b (ω + j)

The quantity

(
ω + j − 1

j

)
can be written as

(ω)j
j!

, where (ω)j is a rising factorial power (Pochhammer

symbol). Thus,

mrl (t) =
p

F̄ (t)

∞∑
k=0

(−1)k(p− 1)k
(
aθ

b

)−ω

e−bωt
∞∑
k=0

(ω)j
j!

((
1− b

aθ

)
e−b t

)j
1

b (ω + j)
.

The quantity 1
b(ω+j)

can be written as θ
b(k+1)

(ω)j
(ω+1)j

.

Thus, when p ∈ (0, 1), the mean residual life of EGG distribution can be written as

mrl (t) =

(
p∗ +

(
1 +

aθ

b

(
ebt − 1

)) 1
θ

)
∞∑
k=0

(−1)k
θ(p− 1)k

b (k + 1)

(
aθ

b

)−ω

e−bωt HG (ω, a, b, θ) (4.13)

where p ∈ (0, 1), HG (ω, a, b, θ) = HyperGeometric2F1
(
ω, ω, ω + 1,

(
1− b

aθ

)
e−b t

)
and aθ

b
> 0.5,

Abramowitz et al. [26].
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Similarlly, when p > 1, the mean residual life can be written as

mrl (t) =
p∗ +

(
1 + aθ

b

(
ebt − 1

)) 1
θ

p

∞∑
k=0

k∑
j=0

(−1)je−bψt
(
p−1
p

)k
( b
aθ
)
ψ
θk!

b(j + 1)j!(k − j)!
HG(ψ, a, b, θ) (4.14)

where p > 1, HG(ψ, a, b, θ) = HyperGeometric2F1
(
ψ,ψ, ψ + 1,

(
1− b

aθ

)
e−bt

)
and aθ

b
> 0.5.

4.6 Distribution of order statistics

The pdf of the ith order statistics, for p ∈ (0, 1), is given by

fi:n (x) =
n!f(x)

(i− 1)!(n− i)!
[1− F̄ (x)]

i−1
[F (x)]

n−i

=
n!f(x)

(i− 1)!(n− i)!

i−1∑
q=0

(−1)q
(
i− 1

q

)
[F (x)]

q+n−i

=
n!aebx(1 + θ a

b

(
ebx − 1

)
)
−1+ 1

θ

(i− 1)!(n− i)!

i−1∑
q=0

(−1)q
(
i− 1

q

)
pν+1{p∗ +

(
1 +

aθ

b

(
ebx − 1

)) 1
θ

}
−(ν+2)

,

fi:n (x) =
an!

(i− 1)!(n− i)!

i−1∑
q=0

∞∑
k,j=0

(−1)q+k+jpν+1

(
i− 1

q

)(
ν + k + 1

k

) (
δ + j − 1

j

)

×(p− 1)k
(
b

aθ
− 1

)j (
aθ

b

)−δ

e−b(δ+j−1)x

for p ∈ (0, 1), where ν=q + n− i, δ = ν+k+1
θ

+ 1 and aθ
b
> 0.5.

For p > 1, the pdf of the ith order statistics is given by

fi:n(x) =
n!

(i− 1)!(n− i)!

1
p
aebx

(
1 + aθ

b

(
ebx − 1

))− 1
θ
−1{

1−
(
p−1
p

) [
1−

(
1 + aθ

b
(ebx − 1)

)− 1
θ

]}2

i−1∑
q=0

(−1)q
(
i− 1

q

)

×
(
1 +

aθ

b

(
ebx − 1

))− ν
θ

1−
(
p− 1

p

)[
1−

(
1 +

aθ

b

(
ebx − 1

))− 1
θ

]−ν

=
n!

(i− 1)! (n− i)!

a

p
ebx

i−1∑
q=0

(−1)q
(
i− 1

q

)(
1 +

aθ

b

(
ebx − 1

))−( ν+1
θ

+1)

×

{
1−

(
p− 1

p

)[
1−

(
1 +

aθ

b

(
ebx − 1

))− 1
θ

]}−(ν+2)

=
n!

(i− 1)!(n− i)!

a

p
ebx

i−1∑
q=0

∞∑
k=0

(−1)q
(
i− 1

q

)(
ν + k + 1

k

)(
p− 1

p

)k

×
(
1 +

aθ

b

(
ebx − 1

))−( ν+1
θ

+1)
[
1−

(
1 +

aθ

b

(
ebx − 1

))− 1
θ

]k

=
n!

(i− 1)! (n− i)!

a

p
ebx

i−1∑
q=0

∞∑
k=0

k∑
j=0

(−1)q+j
(
k
j

)(
i− 1

q

)(
ν + k + 1

k

)(
p− 1

p

)k
×
(
(1− aθ

b
) +

aθ

b
ebx
)−ϑ

10
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Finally,

fi:n (x) =
n!

(i− 1)! (n− i)!

a

p

i−1∑
q=0

∞∑
k=0

k∑
j=0

∞∑
l=0

(−1)q+j+l
(
i− 1

q

)(
ν + k + 1

k

)(
k
j

)(
ϑ+ l − 1

l

)

×
(
p− 1

p

)k(
b

aθ
− 1

)l(
aθ

b

)−ϑ

e−b(ϑ+l−1)x.

for p > 1, where ν=q + n− i, ϑ = ν+j+1
θ

+ 1 and aθ
b
> 0.5.

4.7 Entropy

The entropy is a measure of uncertainty associated with a probability distribution of a random
variable X. Several measures of entropy have been studied in the literature. Here, we consider
Rényi entropy [28] and survival entropy [29]. Rényi entropy of order δ is defined by

Hδ (X) = − 1

δ − 1
log

∞∫
0

fδ (x) dx, ∀δ > 0, δ ̸= 1.

Rényi entropy tends to Shannon entropy as δ → 1. Similarly, using the survival function, the
survival entropy of order δ is defined by

SEδ (X) = − 1

δ − 1
log

∞∫
0

F̄ δ (x) dx, ∀δ > 0, δ ̸= 1.

Let X ∼ EGG (a, b, θ, p), the corresponding Rényi entropy is obtained as

Hδ (X) =
pδ

1− δ
log

{
∞∑
k=0

∞∑
j=0

(−1)k+j
(
δ + k − 1

j

)(
ω∗ + j − 1

j

)
(p− 1)k

(
b

aθ
− 1

)j (
aθ

b

)−ω∗}
,

where p ∈ (0, 1), ω∗ = k+δ
θ

and aθ
b
> 0.5, or

Hδ (X) =
1

1 − δ
log


∞∑
k=0

k∑
j=0

∞∑
l=0

(−1)
j+l

(
δ + k − 1

j

)(
k
j

)(
ψ∗ + l− 1

l

)(
p− 1

p

)k( b

aθ
− 1

)l(aθ
b

)−ψ∗
 ,

where p > 1, ψ∗ = j+δ
θ

and aθ
b
> 0.5.

The survival entropy can be obtained using

SEδ (X) =
pδ

1− δ
log

{
∞∑
k=0

∞∑
j=0

(−1)k+j

b(ω∗ + j)

(
δ + k − 1

j

)(
ω∗ + j − 1

j

)
(p− 1)k

(
b

aθ
− 1

)j (
aθ

b

)−ω∗}
,

where p ∈ (0, 1), ω∗ = k+δ
θ

and aθ
b
> 0.5, or

SEδ (X) =
1

1 − δ
log


∞∑
k=0

k∑
j=0

∞∑
l=0

(−1)j+l

b(ψ∗ + l)

(
δ + k − 1

j

)(
k
j

)(
ψ∗ + l − 1

l

)(
p− 1

p

)k( b

aθ
− 1

)l(aθ
b

)−ψ∗
 ,

where p > 1, ψ∗ = j+δ
θ

and aθ
b
> 0.5.
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4.8 Stochastic order

This section presents the stochastic orders for EGG distribution. Let X and Y be two random
variables distributed according to EGG distribution, that is X ∼ MOGG(a1, b1, θ1, p1) and Y ∼
MOGG(a2, b2, θ2, p2), with corresponding cdfs F and G, respectivel, and f, g their respective pdfs.
We say that X is stochastically smaller than Y in the likelihood ratio order (X≤lrY ) if f(x)/g(x)
is decreasing function of x. Likelihood ratio order implies hazard rate order (X≤hrY ) which in
turn implies usual stochastic order (X≤stY ), for further detail on stochastic orders, see (Shaked
and Shanthikumar, 1995).

If a1 = a2 = a, b1 = b2 = b and θ1 = θ2 = θ, then (X≤lrY ) if and only if p1 < p2, this can be
proved as follows, let

K (x) =
f(x)

g(x)
=
p2(1− (1− p1)

(
1 + aθ

b

(
ebx − 1

))− 1
θ )

2

p1(1− (1− p2)
(
1 + aθ

b
(ebx − 1)

)− 1
θ )

2

and is such that

K′ (x) =
2aebx(p2 − p1)p2

(
1 + aθ

b

(
ebx − 1

))−1− 1
θ (1− (1− p1)

(
1 + aθ

b

(
ebx − 1

))− 1
θ )

p1(1− (1− p2)
(
1 + aθ

b
(ebx − 1)

)− 1
θ )

3 < 0,

if and only if p1 < p2.

5 Estimation

This section consider the maximum likelihood estimations (MLEs) to estimate and derive the
asymptotic confidence intervals of the unknown parameter vector θ = (a, b, θ, p) of the EGG
distribution. Let x1, . . . , xn be a random sample of size n from EGG distribution with pdf (1),
then the log-likelihood function can be written as

ℓ(θ) =n log(ap) + b

n∑
i=1

xi +

(
1

θ
− 1

) n∑
i=1

log(1 +
aθ

b

(
ebxi − 1

)
)

−2

n∑
i=1

log

[
p− 1 +

(
1 +

aθ

b

(
ebxi − 1

)) 1
θ

] (5.1)

The maximum likelihood estimates (MLEs) of θ = (a, b, θ, p), say θ̂ = (â, b̂, θ̂, p̂), are obtained from
maximizing the log-likelihood function (5.1). The log-likelihood function is maximized by solving
the nonlinear system ∂ℓ

∂a
= 0, ∂ℓ

∂b
= 0, ∂ℓ

∂θ
= 0, ∂ℓ

∂p
= 0, simultaneously. These equations can

not be solved analytically and must be solved numerically via iterative methods such as Newton
Raphson technique via mathematical software, i.e. Mathematica (FindRoot function), R (rootSolve
package).

Alternatively, the log-likelihood functions (5.1) can be maximized directly using a mathematical
software, i.e. Mathematica (NMaximize and FindMaximum functions), R (optim and MaxLik
functions).

Confidence intervals (CIs) for the parameters were based on asymptotic normality. Its well known
that the distribution of θ̂ − θ can be approximated by a 4−variate normal distribution with zero
means and covariance matrix I−1(θ̂), where I(θ) is the observed information matrix defined by

I(θ) = −


Laa Lab Laθ Lap
Lba Lbb Lbθ Lbp
Lθa Lθb Lθθ Lθp
Lpa Lpb Lpθ Lpp

 ,

12
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where the components of I(θ) are the second derivative of the log-likelihood function with respect
to a, b, θ and p. The asymptotic 100(1 − α)% confidence interval for the parameters a, b, θ and p

are â±Zα
2

√
V ar(â), b̂±Zα

2

√
V ar(b̂), â±Zα

2

√
V ar(θ̂) and â±Zα

2

√
V ar(p̂) respectively, where

V ar (â) , V ar
(
b̂
)
, V ar(θ̂) and V ar(p̂) are the diagonal elements of I−1

(
θ̂
)
corresponding to each

parameter and Zα
2
is the upper (α

2
) percentile of standard normal distribution.

6 Simulation

In this section, a simulation study is performed to generate random samples with different sizes from
the EGG distribution and investigate the performance of the EGG distribution using Mont-Carlo
Method.

Table 2. Monte carlo simulation results: MSE, AB, CP and AW

n a = 0.2 b = 2.5 θ = 0.25 p = 1.7

AB MSE CP AW AB MSE CP AW AB MSE CP AW AB MSE CP AW

25 0.0032 0.0019 0.9752 0.7847 0.0112 0.0400 0.9404 6.0352 -0.0172 0.0229 0.9798 4.6655 0.1223 0.571 0.931 11.640

50 0.0026 0.0010 0.9494 0.8214 0.0107 0.0215 0.9564 4.0340 -0.012 0.0118 0.966 2.4624 0.0634 0.1976 0.942 10.059

75 0.0021 0.0007 0.942 0.8960 0.0094 0.0146 0.947 3.2880 -0.0097 0.0077 0.958 1.7208 0.037 0.1446 0.944 10.349

100 0.0014 0.0005 0.945 0.826 0.0067 0.011 0.951 2.7142 -0.0073 0.0059 0.948 1.3442 0.0323 0.0949 0.956 9.4725

n a = 1.6 b = 0.9 θ = 1.4 p = 0.8

AB MSE CP AW AB MSE CP AW AB MSE CP AW AB MSE CP AW

25 0.1000 0.396 0.924 2.3940 0.1407 0.203 0.989 4.9706 0.0224 0.1903 0.927 5.7504 0.0128 0.2232 0.98 2.2785

50 0.0448 0.2065 0.925 1.8892 0.081 0.1037 0.976 3.8913 0.0150 0.1035 0.938 3.7940 0.0274 0.0409 0.982 1.3550

75 0.0308 0.1368 0.92 1.7384 0.0593 0.0675 0.972 3.4194 0.0145 0.0701 0.932 3.0480 0.0170 0.0317 0.988 1.0363

100 0.0193 0.0990 0.922 1.6778 0.0446 0.0487 0.968 3.0427 0.0103 0.0539 0.939 2.9136 0.0152 0.021 0.988 1.0697

n a = 5 b = 8 θ = 5 p = 7

AB MSE CP AW AB MSE CP AW AB MSE CP AW AB MSE CP AW

25 0.2442 4.4493 0.9816 23.8131 0.1842 1.0143 0.968 28.0202 -0.0469 0.3003 0.988 21.0524 0.0738 2.5601 0.986 18.249

50 0.2309 4.369 0.943 20.6315 0.1016 0.495 0.954 21.336 -0.0268 0.1538 0.978 16.2769 0.0827 1.4583 0.952 12.5711

75 0.2056 4.116 0.918 15.7889 0.0572 0.3333 0.972 16.3805 -0.0109 0.1065 0.974 12.6537 0.0892 1.1177 0.943 9.7176

100 0.1754 3.725 0.8902 19.0455 0.0423 0.2635 0.964 9.2058 -0.0065 0.0853 0.962 11.4626 0.0854 0.9262 0.931 6.9367

The simulation study is repeated N = 5000 times each with sample size n = 25, 50, 75 and 100.
The following scenarios of the parameter vector θ = (a, b, θ, p) are considered: (0.2, 2.5, 0.25, 1.7),
(1.6, 0.9, 1.4, 0.8) and (5, 8, 5, 7). These selected values of θ gives unimodal, decreasing and
decreasing-increasing-decreasing shapes for pdf of the EGG distribution. Four Quantities were
examined in this Mont-Carlo study:

i) Average bias (AB) of the MLE ϑ̂ of the parameter ϑ = a, b, θ, p:

1

N

N∑
i=1

(ϑ̂− ϑ)
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ii) Mean square error (MSE) of the MLE ϑ̂ of the parameter ϑ = a, b, θ, p:

1

N

N∑
i=1

(ϑ̂− ϑ)
2

iii) Coverage probability (CP) of 95% confidence intervals of the parameter ϑ = a, b, θ, p, i.e.,
the percentage of intervals containing the true value of ϑ.

iv) Average width (AW) of 95% confidence intervals of the parameter ϑ = a, b, θ, p.

Table 2. presents the results of Mont-Carlo simulation study for EGG distribution. From the
results, we can verify that as the sample size increases, the MSEs decay toward zero. We also
observe that for all the parametric values, the ABs decrease as the sample size n increases. Also,
the table shows that the coverage probabilities of the confidence intervals are quite close to the
nominal level of 95% and that the average widths of the confidence intervals decrease as the sample
size increases. Consequently, the MLEs and their asymptotic results can be used for estimating and
constructing confidence intervals even for reasonably small sample sizes.

7 Application

This section is devoted to demonstrate the usefulness of EGG distribution by fitting a real data set
and comparing with its sub-models and other well competitive models. The pdf of the distributions
used with this comparison is as follows:

• Gamma Gompertz distribution, GG(a, b, θ): aebx
(

(aθ)(ebx−1)
b

+ 1

)− θ+1
θ

• Marshal Olken extended Gompertz distribution, MOG(a, b, p) : apebxe
−
a(ebx−1)

b1−(1−p)e−
a(ebx−1)

b


2

• Marshal Olken extended exponential distribution, MOE(λ, p) : λpe−λx

(1−(1−p)e−λx)2

• Gompertz distribution, G(a, b): aebxe−
a(ebx−1)

b

• Exponential distribution, E(λ): λ(e( − λx))

• Marshal Olken extended generalized linear exponential distribution,

MOGLE(a, b, p, θ):
pθλ(ax+b)e

−
(
ax2

2
+bx

)θ(
ax2

2
+bx

)θ−1

1−(1−p)e
−
(
ax2
2

+bx

)θ
2

• Marshal Olken extended Weibull distribution, [30], MOW (λ, α, p): αλpxα−1e−λx
α

(1−(1−p)e−λxα)2

• Alpha power Gompertz distribution, APG(a, b, α): a log(α)
α−1

ebx−
a(ebx−1)

b α1−e−
a(ebx−1)

b

where x > 0; a, b, α, λ, θ, p > 0.

The data set, considered here, represents the lifetimes of 50 devices, [31]. In order to identify the
hazard shape for the given data set, the total time on test (TTT) plot is used, Aarset [31]. The
TTT plot is drawn by plotting

T (i/n) =

∑i
k=1Xk:n + (n− i)Xi:n∑n

k=1Xk:n
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against

i/n

Fig. 3. showed that the TTT plot is first convex and then concave, therefor the hazard rate is
bathtub-shaped. So, the EGG distribution is suitable for Aarset data.

Fig. 3. TTT plot for Aarset data

To select the best distribution for the used data set, the following criteria are calculated: −log-
likelihood, Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC),
Bayesian Information Criterion (BIC), Anderson-Darling statistic (A∗), Cramer-von Mises statistic
(W ∗), Kolmogorov-Smirnov (K-S) distances between the empirical distribution function and the
fitted distribution function and corresponding P-value.

In addition, three graphical goodness of fit methods were used: i) Empirical and fitted pdfs
curves; ii) Kaplan-Meier and fitted survival curves; iii) quantile-quantile (QQ) plots for the fitted
distributions.

Table 3. presents estimates of the parameters of the fitted distributions and the statistics used fr
the comparison. The results in this table show that the EGG distribution has the smallest AIC,
BIC, CAIC, A∗, W ∗ and K-S values, which prove the superiority of the EGG distribution.

Fig. 4. shows the empirical and fitted pdfs in the left panel, whereas the right panel of this figure
shows Kaplan-Meier curve and the estimated survival functions. The fitted pdf and survival function
of EGG distribution are the closest to the empirical density and Kaplan-Meier curve, respectively.

These result are further investigated by showing the quantile-quantile (QQ) plots for the fitted
distributions in fig. 5. The plotted points of the QQ plot for the EGG distribution are closer to
the diagonal line than of the other models.

The likelihood ratio test (LRT) is performed to demonstrate the superiority of EGG to its sub-
models. We tested the null hypotheses, presented in table 5, against the alternative hypothesis
Ha = EGG(a, b, θ, p). Furthermore, table 5. shows the likelihood ratio test statistics (Λ) and the
corresponding P-values which show that all the null hypotheses are rejected.

The asymptotic variance covariance matrix of MLEs for the EGG model parameters is given by

I−1
(
â, b̂, p̂, θ̂

)
=


187.517 −0.2711 421.941 −8.7704
−0.2712 0.0029 −1.2798 0.0701
421.941 −1.2798 1310.15 −39.7641
−8.7704 0.0701557 −39.7641 1.8775
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and the 95% two sided asymptotic confidence interval for a, b, p and θ are given by 6.1802 ±
26.8396, 0.1238± 0.1065, 26.4448± 70.9442 and 3.1343± 2.6856, respectively.

The profile of the log-likelihood function of the parameters a, b, p and θ is plotted in fig. 6. to
show that the likelihood equations have a unique solution.

Table 3. AIC, BIC, CAIC, A∗ , W ∗ and K-S and its corresponding P-Value

Model Estimates −ℓ AIC BIC CAIC A∗ W ∗ K-S P-Value

EGG(a, b, p, θ)
â =6.1802; b̂ =0.1238;

p̂ =26.4448; θ̂ =3.1343
230.541 469.083 476.731 469.972 1.7134 0.2451 0.1515 0.2013

GG(a, b, θ)
â =0.0219; b̂ =0.05486;

θ̂ =2.5062
241.09 488.179 493.915 488.701 3.6501 0.5189 0.191 0.052

MOG(a, b, p)
â =0.0077; b̂ =0.0224;

p̂ =0.741
235.241 476.483 482.219 477.005 4.6178 0.4688 0.1598 0.1557

MOE(λ, p) λ̂ =2.6215; p̂ =0.0320 239.554 483.108 486.93 483.363 4.0525 0.4331 0.163 0.1402

G(a, b) â =0.0097; b̂ =0.0203 235.331 474.662 478.486 474.917 4.8035 0.4675 0.1697 0.1123

E(λ) λ̂ =0.0219 241.09 486.179 490.003 486.435 3.6501 0.5188 0.191 0.052

MOGLE(a, b, p, θ)
â =0.00026; b̂ =0.0099;

p̂ =0.9558; θ̂ =0.7364
238.017 484.034 491.683 484.923 3.7793 0.4654 0.1809 0.0759

MOW (λ, α, p)
λ̂ =0.1585; α̂ =0.6992;

p̂ =6.6973
237.723 481.447 487.183 481.968 2.9561 0.3720 0.1626 0.1421

APG(a, b, α)
â =0.0089; b̂ =0.0211;

α̂ =0.8058
-235.299 476.597 482.333 477.119 4.7607 0.4692 0.1661 0.1267

EGG

E

MOE

GG

APG

MOW

MOG

MOGLE

EGG

E

MOE

GG

APG

MOW

MOG

MOGLE

(a) (b)

Fig. 4. The estimated densities and survival curves for Aarset data
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Fig. 5. The QQ plots for the fitted distributions

Tabe 5. Likelihood ratio test statistics and corresponding P-Value

The model H0 Λ d.f. P-Value

GG EGG(a, b, θ, 1) 21.089 1 < 0.0000

MOE EGG(b, b, 1, p) 18.026 2 < 0.0000

E EGG(b, b, 1, 1) 21.089 3 < 0.0000

Fig. 6. The profile of the log-likelihood function

8 Concluding Remarks and Future Research

This paper proposed a new distribution called Extended Gamma Gompertz distribution based
on two key concepts in survival analysis, frailty models and competing risks problem. The new
distribution considers the possible heterogeneity in the data set. Furthermore, the number of
competing causes of failure is modeled by the geometric distribution. Some properties have been
derived for the EGG distribution. The maximum likelihood method is used to estimate the unknown
parameters. A simulation study is performed to examine the accuracy of the maximum likelihood
estimates. A real data set is used to explore the superiority of the proposed model to its sub-models
and other distributions.

As part of future research, different distributions for the frailty random variable can be used, i.e.
positive stable distribution, [15]. Furthermore, the number of competing causes of failure can be
modeled by the power series distribution which absorbs as particular cases the Poisson, logarithmic,
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geometric, binomial and negative binomial allowing a wide range of models to be considered. Further
discussion on the impact of the parameters on the performance of the proposed models will be
proposed.
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