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Abstract: In order to study the nonlinear behaviors and interactions among the constituents for the
composite material structure under the tensile load, multiscale damage model using generalized
method of cells (GMC) and a lamina-level progressive damage model were established, respectively,
for fiber reinforced composite laminates with a central hole, which were based on the thermodynamic
Schapery Theory (ST) at either the micro-level or the lamina level. Once the nonlinear progressive
degradation of the matrix material reached the lower limit value for the ST method, matrix failures
naturally occurred, the failure of the fiber was determined by the maximum stress failure criterion.
For the multiscale progressive damage model, the GMC model consisting of a fiber subcell and three
matrix subcells was imposed at each integral point of FEM elements, and the three matrix subcells
undergo independent damage evolution. The load versus displacement curves and failure modes
of the open-hole laminates were predicted by using the two progressive failure models, and the
results were compared with that obtained by the Hashin-Rotem progressive failure model and the
experimental results. The results show that the ST based method can obtain the nonlinear progressive
damage evolution states and failure states of the composite at both the lamina level and the multiscale
level. Finally, the damage contours and failure paths obtained are also presented.

Keywords: progressive damage analysis; generalized method of cells; multi-scale analysis; schapery
theory; fiber reinforced composite

1. Introduction

Polymer matrix composites (PMCs) have been widely used in aircraft structures
owing to their low weight, high strength, high resistance to fatigue, and many other
superior advantages. Progressive damage analysis of composite laminates is regarded as an
important and complex subject, which is highlighted by the World-Wide Failure Exercise
(WWFE) [1–3]. It is mainly based on macroscopic failure analysis methods within the
WWFE to predict the final failure behavior of fiber reinforced composites. The associated
parameters in these theories generally rely on extensive mechanical experiments, which
result in myriad costs of time and expense. Although many criteria take different failure
modes into account and incorporate progressive failure modeling [4–6], they are essentially
phenomenological methods that cannot capture the interaction between the constituents at
the microscale level. In order to more accurately characterize the mechanical response of
the fiber reinforced composite structures, damage and failure mechanisms must be treated
separately [7–9]. The gradual expansion of matrix micro-damage or micro-crack originates
from the distributed micro-pores or other micro-defects produced in the manufacturing
of composite structures. The damage expansion leads to stiffness reduction in local areas
of the structure, resulting in redistribution of stress and strain fields, which is the main
cause of nonlinear phenomena before the catastrophic failure of fiber reinforced composite
materials occurs [10].
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Progressive damage and failure analysis of composite structures with an open hole
is one of the hot subjects for structural designs [11,12]. Stress concentration and redistri-
bution around the open hole in a laminate subjected to tensile loads can lead to produce
complicated damage and failure modes [13], including matrix cracking, fiber breakage,
delamination, etc. [14,15]. Linear elasticity along with different failure criteria are usually
employed to predict the damage and failure states of composite structures with an open
hole for many analytical and numerical models at the micro level [16]. Even though the
failure of fiber and matrix is treated distinctly for these progressive damage methods [6], it
is not available to obtain the interaction between the constituents.

Micromechanical models are able to acquire the quantitative relationship among the
constituent materials within the composites [17]. By using microscopic mechanical meth-
ods, variations of constituent material properties, constituent phases or the microscopic
geometries, such as the fiber volume fraction and micro-level architecture, can be con-
sidered conveniently to promote a further study of the failure mechanism for composite
structures. The generalized method of cells (GMC) [18,19] based on a homogenization
technique are actually analytical, which has been proved to have very high computational
efficiency. Formulations of the GMC model contain the applications of some governing
equations using a homogenization method, by which traction and displacement continuity
equations are imposed at the subcell interfaces and the periodic boundaries of the repeating
unit cell (RUC) in an integral sense. It is convenient to apply the micromechanics model
GMC to the multiscale analysis within commercial finite element software [20,21].

The main objective of the current work is to use a thermodynamically based Schapery
Theory (ST) [22–24] to predict the nonlinear response, the damage evolution, and the
failure contour for the composite laminates with an open hole under tensile loading. Two
progressive damage methods are used, one is ST/FF (Schapery Theory/Fiber Failure)
method at the laminate level, the other is a multi-scale analysis method ST/GMC/FF
(Schapery Theory/Generalized Method of Cells/Fiber Failure) at micro-scale level, both
models contain a ST based degradation strategy of elastic properties for the matrix damage
and the maximum stress failure criterion for the fiber failure, which are employed at
either the lamina level or the micro level. The results obtained from these two models are
compared with the experimental data and that analysed using Hashin-Rotem progressive
damage method embedded in the ABAQUS software.

2. Multiscale Method of Progressive Damage and Failure
2.1. ST Model

The Schapery Theory can be used for the progressive damage analysis of the fiber
reinforced composites, in which the total applied potential WT of the material is divided
into the recoverable elastic part W and the dissipative part WS that can cause structural
deformation [25].

WT = W + WS (1)

A portion of the total applied work potential causes the microcracking and any other
structural changes when the material is loaded, which affects the elastic properties of the
material, and at the same time, the other portion of the applied work potential can be
recovered when the material is unloaded. This process is shown in Figure 1, where the
shaded area represents the dissipated potential WS and the area below the straight line
represents the elastic potential W.

According to the ST method [22,23], both W and Ws are functions of a group of internal
state variables (ISVs) Sm (m = 1, 2, . . . , M). The total applied work potential is a constant
with respect to each of the internal state variables [23],

∂WT
∂Sm

= 0 (2)
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Figure 1. Irrecoverable portion Ws (shaded area) and the elastic portions W.

The dissipated potential WS is allowed to be a function of any number of internal state
variables, and different internal state variables can be used to explain different damage
and failure mechanisms. In order to describe the nonlinear progressive damage of the
matrix material of the fiber reinforced composites, Ws is assumed to be a function of a
single internal variable S [25]. For convenience, Ws = S can be selected,

WT = W + S (3)

Calculating the derivative of Equation (3) with respect to S yields,

∂W
∂S

= −1 (4)

2.2. Constitutive Relation

The constitutive relation of a unidirectional lamina under the plane stress state can be
written as,

σ11 = Q11ε11 + Q12ε22
σ22 = Q12ε11 + Q22ε22

τ12 = Q66γ12

(5)

where γ12 is the engineering shear strain, and

Q11 = E11
1−ν12ν21

Q22 = E22
1−ν12ν21

Q12 = ν12Q22
Q66 = G12

ν21 = ν12E22
E11

(6)

where E11, E22, υ12, υ21, and G12 denote axial elastic modulus, transverse elastic modulus,
Poisson’s ratio, transverse Poisson’s ratio, and shear modulus respectively. It can be
assumed that υ12υ21 � 1, then Equation (6) becomes

Q11 = E11
Q22 = E22

Q12 = ν12Q22
Q66 = G12

(7)
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2.3. Calculating the Damage State

The damage mechanism associated with the internal state variable S only is limited
to the matrix phase of composite materials, so it is considered that the damage is limited
to E22 and G12, or only degrades the matrix material in the RUC. Both E22 and G12 are
functions of the internal state variable S, which can be expressed as,

E22 = E220es(S) (8)

G12 = G120gs(S) (9)

where, E220 and G120 represent the original transverse elastic modulus and shear modulus,
and es(S) and gs(S) represent the polynomial function of the transverse and shear modulus
with respect to S.

According to the plane stress constitutive relation, the expression of elastic strain
energy density W can be expressed as,

W =
1
2
(E11ε2

11 + E22ε2
22 + G12γ2

12) + Q12ε11ε22 (10)

By assuming Q12 is constant, and differentiating Equation (10) with respect to S yields,

ε2
22
2

∂E22

∂S
+

γ2
12
2

∂G12

∂S
= −1 (11)

Experiments show that variable S is a function of ε3 [25], so a reduced internal state
variable Sγ can be introduced,

S = S3
γ (12)

Then, Equation (11) becomes

ε2
22
2

∂E22

∂Sγ
+

γ2
12
2

∂G12

∂Sγ
= −3S2

γ (13)

Once Sγ is solved by Equation (13), the elastic moduli E22 and G12 can undergo
nonlinear degradation according to Equations (8) and (9).

2.4. Generalized Method of Cells

The generalized method of cells (GMC) is employed to predict the strengths of con-
tinuous fiber composites in this work. The fiber reinforced composite is modeled as a
rectangular repeating unit cell that contains a preset number of rectangular subcells as
shown in Figure 2, and each subcell (βγ) may be occupied by a distinct homogeneous
material. The constitutive equation in each subcell for the micromechanical model is
denoted below,

σ(βγ) = C(βγ)ε(βγ) (14)

where σ(βγ), C(βγ), and ε(βγ) represent the average stress components, the elastic stiffness
matrix, and the average total strain components in subcell (βγ), respectively. Inelastic strain
and thermal strain are not took into considered herein.

The basic displacement assumptions in GMC is a linear polynomial, as shown in
Formula (15), with the local coordinates (x(β)

2 , x(γ)3 ) located at the center of each subcell,

u(βγ)
i = W(βγ)

i(00) + y(β)
2 W(βγ)

i(10) + y(γ)3 W(βγ)
i(01) i = 1, 2, 3 (15)

where W(βγ)
i(00) represents the displacements at the center of subcell (βγ), microvariables

W(βγ)
i(10) and W(βγ)

i(01) characterize the first-order dependence of the displacement field on the

local coordinates x(β)
2 and x(γ)3 .
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The formulation of GMC involves imposition of several governing conditions, in-
cluding application of continuity of displacements and tractions at each of the subcell
interfaces and the periodic boundaries of the repeating unit cell (RUC) in an average sense.
By regarding the stress components in the subcells as the basic unknowns, a system of equa-
tions relating the unknown stress variables to the macroscopic strains can be represented
as follows,

GT = fm (16)

where the G matrix consists of information on the geometry and mechanical properties of
the material in the individual subcells (βγ), the T vector represents the subcell stress com-
ponents that need to be solved, and the fm vector incorporates information of geometrical
dimensions and the global strains on the RUC.

The expression that relates the average strain in the subcell to the externally global
strain in virtue of the solutions of Equation (16), then the final form of the global constitutive
equation that relates the average stress σ and strain ε is determined as follow,

σ = C∗ε (17)

where C* is the average or effective stiffness matrix.
The global stress can be established in the GMC repeating unit cell as follow,

σ =
1
hl

Nβ

∑
β=1

Nγ

∑
γ=1

hβlγσ(βγ) (18)

where h and l represent the height and length of the RUC, hβ and lγ represent the height
and length of the subcell (βγ), as shown in Figure 2.

The GMC model is applied to each integration point of each finite element, and the
strain states of each integral point are taken as the load input to the RUC, then the stress and
strain states of each constitutive materials can be obtained according to Equation (16). The
damage evolution and failure are evaluated at the micro-level, and after updating the stiff-
ness matrix using the homogenization method, the multi-scale analysis will entry the next
finite element iterative calculation. Figure 3 is a schematic diagram of the analysis process.
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3. Analysis Method

Three analysis methods are adopted in this paper, one is a multi-scale analysis method
based on GMC, the second method is based on ST at the lamina level, and the last one
employs an empirical method based on the 2D Hashin-Rotem failure criteria and implicit
solver of static analysis is used. The maximum stress failure criterion for fiber subcells
and ST theory for matrix subcells are employed for the first method, the maximum stress
failure criterion together with a degradation limit are used for the second method. Once
the reduced internal state variable Sγ is determined, the transverse and shear stiffness of
matrix properties degrades according to the damage functions es and gs. These damage and
failure models for the static analysis are all implemented in ABAQUS/Standard employing
the user-defined subroutine UMAT.

3.1. Lamina Level Damage and Failure Model Based on ST

According to the experimental data of transverse elastic modulus E22 and shear
modulus G12 corresponding to internal variable Sγ in literature [26], damage functions
es and gs are obtained by cubic polynomial fitting, as shown in equations below. The
coefficients are shown in Table 1. Figure 4 shows the polynomial es and gs obtained by
fitting and the experimental data, respectively. The fitting effect is very ideal. The damage
evolution rate of G12 is obviously higher than that of E22.

es = es0 + es1Sγ + es2S2
γ + es3S3

γ (19)

gs = gs0 + gs1Sγ + gs2S2
γ + gs3S3

γ (20)

Table 1. Micro-damage polynomial coefficients for E22 and G12.

E22
Coefficients Values G12

Coefficients Values

eS0 1 gS0 1
eS1 −0.1308 gS1 −0.7269
eS2 −0.5650 gS2 −0.6706
eS3 0.2304 gS3 0.3932
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Figure 4. Ratio of actual modulus to virgin modulus as a function of the reduced internal state variable.

According to Equation (13), the value of Sγ depends on the strain state of the repeating
unit cell, that is, it is determined by the transverse strain ε22 and shear strain γ12. Figure 5
show the changing curves of Sγ with ε22 in the interval [0, 0.035] when γ12 is selected to be
0, 0.0025, 0.005, 0.0075, and 0.01. It can be seen that the positive solution of Sγ is unique
and monotonically increasing. The growth rate increases first, then decreases, and finally
flattens out. The values of Sγ are between 0 and 1.2.
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It is generally believed that fiber fracture occurs instantaneously and results in imme-
diate local failure of laminates. Therefore, the properties of fiber is deemed to be linear
before it reaches the ultimate failure, so the strength prediction can be satisfied by using a
simple maximum stress failure criterion.(

σ11

XT

)2
= d2

f , σ11 > 0 (21)

(
σ11

XC

)2
= d2

f , σ11 < 0 (22)

where σ11 is the stress in the fiber direction, XT and XC are the fiber direction tensile and
compressive strengths. Fiber failure will initiate when df exceed 1.

For the matrix damage of monolayer plate, the degradation of E22 and G12 for a
laminate or the RUC is reduced by Equations (8) and (9). Since material softening may
cause convergence problems for the finite element model using the implicit algorithm, the
degradation ratio of E22 and G12 was limited to 0.4, after which the damage evolution was
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terminated and E22 and G12 would remain constant, and the matrix material is considered
to be failed.

3.2. Micro-Scale Damage and Failure Model

The micromechanical GMC model can capture the interaction between the constituents
of composite materials, and can easily analyze the damage or failure of fiber and matrix
phases independently. Each material point in the finite element model corresponds to a
2 × 2 RUC [21], as shown in Figure 6, containing one fiber subcell and three matrix subcells.
The fiber volume fraction of T800/3900-2 lamina is 0.6, and its properties of fiber and matrix
constituents are shown in Tables 2 and 3.
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Properties Values/GPa

Ef11 293 Em11 2350
Ef22 91 Em22 2350
υf12 0.23 υm12 0.35
υf23 0.45 υm23 0.35
Gf12 55 Gm12 2300

Table 3. Strengths of the composite constituents.

Properties Values/MPa

Tensile fiber strength, Xft 5200
Compressive fiber strength, Xfc 2855

Matrix transverse tensile strength, Ymt 49
Matrix transverse compressive strength, Ymc 124

Matrix shear strength, S 41

Fiber subcells are considered to be linear before the failure occurs, and the fiber
subcell failure is determined by the maximum stress failure criterion, which is shown
in Equations (23) and (24). The material properties of fiber constituent after failure are
immediately reduced to 0.01% of its initial value.(

σ
(11)
11

X f t

)2

= d2
f , σ11 > 0 (23)
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(
σ
(11)
11

X f c

)2

= d2
f , σ11 < 0 (24)

where σ
(11)
11 is the stress of the fiber subcell in the longitudinal direction, Xfc and Xfc are its

tensile and compressive strengths. When damage variable df is greater than or equal to 1,
fiber subcells would fail.

In each time step of the multiscale analysis, the GMC micromechanics model calculates
the overall elastic moduli should be consistent with the laminate level moduli obtained
from Equations (8) and (9). Therefore, the matrix subcells should be degraded in a certain
way in order to produce the same E22 and G12. Matrix constituent properties are also
functions of the reduced internal state variable Sγ,

Em = Em0es(Sγ) (25)

Gm = Gm0gs(Sγ) (26)

The value of Sγ is determined by the following formula,(
ε
(βγ)
22

)2

2
∂Em0

∂Sγ
+

(
γ
(βγ)
12

)2

2
∂Gm0

∂Sγ
= −3S2

γ (27)

where ε
(βγ)
22 and γ

(βγ)
12 represent transverse strain and shear strain of matrix subcell (βγ).

Matrix subcell stress vector σ(βγ) can be obtained by the following formula,

σ(βγ) = Aε, (28)

A is a third-order matrix connecting the macroscopic strain components and the stress
components of each subcell under the plane stress state.

Using the constitutive relation of the subcell material, there is

ε(βγ) = S(βγ)σ(βγ) (29)

where S(βγ) is the flexibility matrix of the subcell (βγ) material.
Combined with Equations (28) and (29), the expressions of strain of each subcell are

as follows:
ε(βγ) = S(βγ)Aε (30)

Due to the different stress-strain states of each matrix subcell at the same material
point in the analysis process, the damage evolution rates of different matrix subcells are
different. In order to keep the same as the damage limit 0.4 of lamina level E22 and G12, the
matrix subcell material with damage evolution dropping to 0.4 earlier stops, degrading
until the last matrix subcell reaches the degradation limit, which represents the final matrix
failure of the RUC. The flow chart of multi-scale analysis algorithm based on a four-subcells
GMC model is as shown in Figure 7.

3.3. Lamina-Scale Failure Model-Based Hashin-Rotem Theory

The Hashin-Rotem failure theory include separate criteria for fiber and matrix. The
fiber failure criteria are the same as the maximum stress criteria as shown in Equations (21)
and (22). Matrix failure are contributed by the transverse and shear stresses in a lamina,
which are dictated by (

σ22

YT

)2
+
(τ12

S

)2
= d2

m, σ22 > 0 (31)

(
σ22

YC

)2
+
(τ12

S

)2
= d2

m, σ22 < 0 (32)
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where σ22 and τ12 are the transverse and shear stresses in a lamina, YT, YC, and S are
respectively the transverse compressive strength, transverse tensile strength, and shear
strength in the composite lamina.
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4. Results and Discussion
4.1. Experimental Result

A total of 8 composite specimens with a central opening hole are provided, of which
the geometric dimensions are: 250 mm long, 25.26 mm wide, 2.28 mm thick, and the
central hole diameter 4.76 mm. [45/−45/0/−45/0/45/45/0/−45/0/−45/45] are the
laminate stacking sequences, and the material properties of these specimens correspond to
T800/3900-2 as shown in Table 4.

Table 4. Elastic properties of the T800/3900-2 lamina.

Elastic
Properties Values Elastic

Properties Values

E1/GPa 154 G23/MPa 4340
E2/GPa 9 Em12 0.29
E3/GPa 9 vm13 0.29

G12/MPa 4340 vm23 0.45
G13/MPa 4340

The tensile test process of open-hole laminates is conducted in accordance with ASTM
D5766—standard test method for open-hole tensile strength of polymer matrix composite
laminates. The open-hole tensile test of laminates was carried out on MTS 370 electro-
hydraulic servo test machine, which has a maximum load-carrying capacity of 250 kN with
a accuracy of 0.5%. The displacement load curves of the test pieces are shown in Figure 8.
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Figure 8. The force-displacement curve of eight specimens.

The average failure load of all specimens is 38.34 kN, and the dispersion coefficient is
2.13%. It can be seen from the displacement versus load curve that all the specimens are
obviously brittle before the ultimate failure determined by the tensile strength of 0◦ layer
onset. The photograph of the failed specimen is present in Figure 9, it can be observed
that the catastrophic failures are concentrated around the open hole which causes the
stress concentrations and finally span the width of the specimen, the failure modes of the
specimen are mainly as follows: tensile fracture of fiber for 0◦ layer and tensile fracture of
the matrix for ±45◦ layer.
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4.2. Results of Finite Element Analysis

The three methods implemented using the subroutine UMAT introduced in Section 2
above are used to conduct the finite element analysis of the open-hole laminate specimens.
The S4R mesh type is used, and the mesh is refined around the open hole. The composite
constituents properties can be seen in Tables 2 and 3, and the laminate properties are shown
in Table 4. Additionally, the tensile and compressive strengths of the composite laminate
are 2690 MPa and 1380 MPa, respectively, which are provided by vendors and used to
perform FEA at the micro-level. The finite element model is restricted from moving in
the thickness direction and all the in-plane rotational degrees of freedom to account for
plane stress simulation. The left end of the model is fixed and the right edge is constrained
in the transverse displacement and all rotations, then a tensile displacement of 5 mm is
applied to the right end. The load versus displacement curves obtained from the three
progressive damage methods are shown in Figure 10. It can be observed that the ultimate
load prediction for ST/FF (38.76 kN), Hashin-Rotem (39.49 kN) and ST/GMC/FF (38.93 kN)
agree well with the experimental value (38.45 kN). The load displacement curve obtained
by Hashin-Rotem progressive damage method is linear, but both ST/FF and ST/GMC
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methods achieve satisfactory nonlinear reduction before the displacement-load curve
reaches its peak. The load displacement curve obtained in the experiment has shown, to
some extent, nonlinear behavior, especially near the end of the experimental curve. In the
experiment, the crack initiates around the open hole and propagates rapidly to the edge of
the specimen. It is not possible to capture the rapid progression of the crack by using the
implicit solver, so the gradual failure of fiber and matrix yield the exhibited softening in
the ST or ST/GMC model.
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Figure 10. The force–displacement curve of simulations.

Figure 11 shows the fiber damage and matrix nonlinear damage state of 0◦ layer and
45◦ layer under different loads by ST/FF method. As the damage states of the −45◦ layer
and 45◦ layer are basically symmetric with respect to the 0◦ axis, the damage contour of 0◦

layer and 45◦ layer are selected to be shown below. At 80% ultimate load, tensile and shear
damage begin to fail at the upper and lower edges of the open hole, while no element in
the transverse direction reaches the maximum failure value for 0◦ layer. Under this load, a
small number of elements have failed in the transverse direction and more shear failure are
presented around the open hole for the 45◦ layer, but no fiber failure occurs in this layer. At
90% ultimate load, the fiber failure, the progressive degradation of transverse and shear
moduli for 0◦ layer and 45◦ layer all continue to extend. When reaching the ultimate load,
all damage contours of 0◦ or 45◦ layer have spanned the width of the specimen except for
the fiber failure of 45◦ layer, after which the crack propagates rapidly until most of elements
around the open hole are failed. It can be observed the degree of damage for shear modulus
are greater than that of transverse modulus in both 0◦ and 45◦ layers, which is consistent
with the theoretical model shown in Figure 4 above. The final damage patterns of 0◦ or 45◦

layer are in agreement with the experimental results, which proves that the prediction of
failure mode is reliable.

Figure 12 shows the nonlinear damage contours of three matrix subcells for 0◦ layer
and 45◦ layer under both 16.7 kN and the ultimate loads using ST/GMC/FF method.
Under the loading of 16.7 kN, the shear modulus of the second matrix subcell at 0◦ layer
begins to fail for a few elements at the upper and lower edges of the open hole, while none
of the damage of transverse modulus of any element reaches its failure value. The other
two matrix subcells for 0◦ layer have the same damage evolution and do not reach the
lower limit of damage 0.4. Under this load, the shear elastic moduli gs of the three matrix
subcells for 45◦ layer have been extended into a cross shape of ±45◦, however, just a few
transverse failure appears at the upper and lower edges of the open hole for the matrix
subcells. The transverse and shear modulus progressive damage patterns are basically the
same. Under the ultimate load, the transverse elastic modulus and shear modulus of all
subcells in 45◦ layer have evolved to the failure value in almost all finite elements around
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the hole, which is not shown Figure 12. The shear moduli of first and third matrix subcells
at 0◦ layer evolve to the limit value 0.4 for most elements, as shown in the third row of
Figure 12, while the damage of transverse elastic moduli evolve along the direction of x2
axis, which does not span the finite element model. It can be seen that the elastic modulus
of second matrix subcell degrade faster than the other two matrix subcells, because the
second matrix subcell locates at the same column with the fiber subcell, which have a large
value of stiffness component according to the stress continuity assumption of GMC, i.e., σ22
in the same column of RUC are equal on the x2 axis shown in Figure 2. This phenomenon
is very obvious at 0◦ layer, but not at 45◦ layer, indicating that the reduction evolution of
matrix subcells is sensitive to the layer angle.
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As shown in Figure 13, the damage state of 0◦ layered fiber subcells is similar to the
damage contour obtained by ST/FF method, in which the failure starts from the elements
at the upper and lower edges of the hole and expands along the oblique crossing direction,
until it runs horizontally through the finite element model. Because the RUC model used
contains only one fiber subcell, the failure of the fiber subcell means the fiber failure for the
whole RUC at the finite element scale.
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5. Conclusions

By using ST/FF, Hashin progressive damage model and ST/GMC/FF multi-scale
progressive damage model, the ultimate load, failure mode and nonlinear damage evolution
of fiber reinforced composite laminates with a central open hole were analysed, and the
tensile experiment results of 8 specimens were compared. The following conclusions can
be drawn:

1. ST/FF nonlinear damage model, Hashin-Rotem progressive damage analysis method,
and the ST/GMC/FF model based on the multi-scale progressive damage model are
ideal to predict the damage state, failure pattern and the ultimate load, where the
ST method well captured the nonlinear behavior of the laminates and reasonable
failure mode prediction was obtained. The ST method makes the matrix damage
become a natural nonlinear damage evolution and replaces the traditional matrix
failure criterion model. Fiber tensile failure shows obvious brittleness behavior, so the
failure criterion of fiber is still needed in both macroscopic and microscopic models.

2. Based on the multi-scale progressive damage model of GMC model, ST/GMC/FF
methods will resolve stresses or strains of a laminate to the repeating unit cell at the
microscopic level, which make the matrix and fiber constituents to be distinguishable,
and different matrix subcells also have independent damage evolvement and failure
states. It shows that the multi-scale method based on the GMC model can better
explain the crack path and failure mechanism for the matrix constituent of a laminate.
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