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In this paper, we firstly derive a general expression for the entries of the mth (m ∈ℕ) power for two certain types of tridiagonal
matrices of arbitrary order. Secondly, we present a method for computing the positive integer powers of the anti-tridiagonal
matrix corresponding to these matrices. Also, we give Maple 18 procedures in order to verify our calculations.

1. Introduction

In recent years, computing the arbitrary positive integer
powers of tridiagonal matrices has been a very popular prob-
lem for researchers. Tridiagonal matrices are used in differ-
ent areas of science and engineering. Solution of difference
systems [1], the numerical solution of PDE’s [2], telecom-
munication system analysis [3, 4], texture modeling [5],
image processing, and coding [6] are examples for applica-
tions of these matrices. In these areas, the computation of
the powers of these matrices is necessary. There have been
several papers on computing the integer powers of various
kinds on tridiagonal matrices [7–16].

In this paper, we derive a general expression for the
entries of themth (m ∈ℕ) power for two certain types of tri-
diagonal matrices of arbitrary order as follows:

A =

a ± b b        

b a b   0  

  b ⋱ ⋱    

    ⋱   b  

  0   b a b

        b a + b

           

2
666666666666664

3
777777777777775

, ð1Þ

where b ≠ 0 and a and b are in the complex numbers. This
model matrix has been known for a long time. For example,
we have the influential works by D.E. Rutherford [3, 4]. The
matrices that calculate their powers in [7, 8] are special cases
of matrix (1), for (a = 0, b = 1), in cases that the ð1, 1Þth
entry is (a + b) and (a − b), respectively.

2. Main Results

In this section, we firstly derive two formulas for calculating
the mth power for matrix (1) in two cases, where m ∈ℕ and
ℕ denotes the set of natural numbers; then, we present a
method for computing the positive integer powers for one
type of the anti-tridiagonal matrix corresponding to the
matrix (1). According to the following lemmas, we can find
the eigenvalues and eigenvectors of the matrix (1).

Lemma 1 (see [17]). The eigenvalues λ1, λ2,⋯, λn of the
matrix (1) are given as follows: when the ð1, 1Þth entry is
a + b.

λk = a + 2b cos k − 1ð Þπ
n

, k = 1, 2,⋯, n, ð2Þ

the corresponding eigenvectors uðkÞ = ðuðkÞ1 , uðkÞ2 ,⋯,uðkÞn ÞT , k
= 1, 2,⋯, n, are given by
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u 1ð Þ
i =

ffiffiffi
1
n

r
, i = 1, 2,⋯, n,

u kð Þ
i =

ffiffiffi
2
n

r
cos 2i − 1ð Þ k − 1ð Þπ

2n
, i = 1, 2,⋯, n ; k = 2, 3,⋯, n:

ð3Þ

Lemma 2 (see [17]). The eigenvalues λ1, λ2,⋯, λn of the
matrix (1) are given as follows: when the ð1, 1Þth entry is
a − b.

λk = a + 2b cos 2k − 1ð Þπ
2n

, k = 1, 2,⋯, n, ð4Þ

the corresponding eigenvectors vðkÞ = ðvðkÞ1 , vðkÞ2 ,⋯,vðkÞn ÞT , k =
1, 2,⋯, n, are given by

v kð Þ
i =

ffiffiffi
2
n

r
sin 2i − 1ð Þ 2k − 1ð Þπ

4n
, i = 1, 2,⋯, n ; k = 1, 2,⋯, n:

ð5Þ

Theorem 3 (see [5]). If A ∈Mn has n distinct eigenvalues,
then A is diagonalizable.

Since θ° cos θ is strictly decreasing on [0,π], the eigen-
values of matrix (1), i.e., of A, are all distinct and the
matrix is hence diagonalizable by [5], Theorem 1.3.9.
The proof of [5], Theorem 1.3.7 shows that if we define
the matrix U = ½u0, u1,⋯,un−1�, then U−1AU = diag ðλ0, λ1,
⋯,λn−1Þ = J will be a diagonal. Conversely, we will have
Am =U diag ðλm0 , λm1 ,⋯,λmn−1ÞU−1, for any integer m. We
will use this to give explicit formulas for ½Am�i,j. From
Lemma 1, we can write the columns of the matrix U as

u 1ð Þ =
ffiffiffi
1
n

r 1
1
⋮

1

2
66664

3
77775,

u kð Þ =
ffiffiffi
2
n

r
cos k − 1ð Þπ

2n

cos 3 k − 1ð Þπ
2n

⋮

cos 2n − 1ð Þ k − 1ð Þπ
2n

2
6666666664

3
7777777775
, k = 2, 3,⋯, n:

ð6Þ

Hence,

U = u 1ð Þ, u 2ð Þ, u 3ð Þ,⋯,u nð Þ
h i

: ð7Þ

Since matrix (1) is symmetric, the associated eigenvec-
tors are orthogonal. Therefore, we can write

U−1 =UT = u 1ð Þ, u 2ð Þ, u 3ð Þ,⋯,u nð Þ
h iT

: ð8Þ

By using following corollaries, we can calculate the m
th power of the matrix (1).

Corollary 4. Let A be a tridiagonal matrix defined in (1) in
case a + b and m is a positive integer; then,

Am½ �i, j =
1
n
λm1 + 2

n
〠
n

k=2
λmk cos 2i − 1ð Þ k − 1ð Þπ

2n
cos 2j − 1ð Þ k − 1ð Þπ

2n
,

ð9Þ

for i, j = 1, 2,⋯, n, where λk = a + 2b cos ðððk − 1ÞπÞ/nÞ, k =
1, 2,⋯, n.

Corollary 5. Let A be a tridiagonal matrix defined in (1) in
case a − b and m is a positive integer. Then,

Am½ �i, j =
2
n
〠
n

k=1
λmk sin 2k − 1ð Þ 2i − 1ð Þπ

4n
sin 2k − 1ð Þ 2j − 1ð Þπ

4n
,

ð10Þ

for i, j = 1, 2,⋯, n, where λk = a + 2b cos ððð2k − 1ÞπÞ/2nÞ,
k = 1, 2,⋯, n.

In the continuation, we present amethod for computing the
positive integer powers of the one type of the anti-tridiagonal
matrices corresponding to the matrix (1), as follows:

B =

        b a + b

  0   b a b

  b ⋰ ⋰ b  

b a b ⋰ 0  

a + b b        

           

2
666666666664

3
777777777775
: ð11Þ

Let

J =

        1
  0   1  

    ⋰    

  1   0  

1        

2
666666664

3
777777775
: ð12Þ

Lemma 6. If matrices A, B, and J have the form (1), (11), and
(12), respectively, then
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B = AJ: ð13Þ

Proof. According to the definition of the multiplication of
matrices, we can conclude

AJ½ �i,j = 〠
n

k=1
A½ �i,k J½ �k,j

= A½ �i,n+1−j =

a + b if i = 1, j = n,

a + b if i = n, j = 1,

a if n + 1 − i + jð Þ = 0,

b if n + 1 − i + jð Þ = ±1,

0 if otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

= B½ �i,j ; i, j = 1, 2,⋯, n,
ð14Þ

Lemma 7. If the matrices A, B, and J have the form (1), (11),
and (12), respectively, then the mth power ðm ∈ℕÞ of matrix
B is computed as follows:

For k = 1, 2, 3,⋯,

Bm =
Am for r = 2k,
AmJ for r = 2k − 1:

(
ð15Þ

Proof.We prove this lemma by induction on k. The base case
of k = 1 is true, because from Lemma 6and from that, AJ =
JA and J = J−1 follow

B = AJ ,
B2 = AJð Þ2 = AJAJ = AJ2A = AIA = A2:

ð16Þ

From (16), we have B2 = A2 so B2k = A2k and from B2

= A2 and B = AJ , we can conclude B3 = A3 J . By repeating
this method, we have B2k−1 = A2k−1 J .

Suppose that the result is true for k > 1 and consider case
k + 1:

By the induction hypothesis, we have

B2k = A2k,
B2k−1 = A2k−1 J:

ð17Þ

We show that case k + 1 also is true. By using (17), we
can write

B2k+2 = B2kB2 = A2kA2 = A2k+2, ð18Þ

and also,

B2k+1 = B2kB = A2kAJ = A2k+1 J: ð19Þ

Thus, the formulas also hold for k + 1 and the induction
arguments are completed.

We can compute the ði, jÞth entry of the mth power for
the matrix B in (11) by using formula (9) and Lemma 7.

We leave the calculation of the positive powers of the fol-
lowing antisymmetric matrix to the reader.

C =

        b a − b

  0   b a b

  b ⋱ ⋱ b  

b a b ⋱ 0  

a + b b        

2
666666664

3
777777775
: ð20Þ

Appendix

Following Maple 18 procedures, calculate the mth power of
n-square tridiagonal matrix given in (1) (in cases ða + bÞ
and ða − bÞ of arbitrary order, respectively.

>restart:
with(ListTools):
power:=proc(n,m,a,b)
local kappa,lambda,i,j,A,power;
for kappa from 1to n
do
lambda½kappa�≔ a + 2 ∗ b ∗ cos ððkappa − 1Þ ∗ PiÞ/n;
end do;
power:=[]:
for i from 1 to n
do
for j from 1 to n
do
A½m, i, j�≔ ð1/nÞ ∗ ðlambda½1�Þm + ð2/nÞ ∗ sumððlambda

½k�ÞmÞ ∗ cos ðð2 ∗ i − 1Þ ∗ ðk − 1Þ ∗ PiÞ/2 ∗ nÞcos ðð2 ∗ j − 1Þ
∗ ðk − 1Þ ∗ PiÞ/2 ∗ nÞ, k = 2::nÞ;

power:=FlattenOnce([power,A[m,i,j]]);
od;
od;
print(simplify(Matrix(n,n,power)));
end proc:
>power(7,1,0,1)

1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1

2
666666666666664

3
777777777777775

ðA:1Þ
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>power(7,2,0,1)

2 1 1 0 0 0 0
1 2 0 1 0 0 0
1 0 2 0 1 0 0
0 1 0 2 0 1 0
0 0 1 0 2 0 1
0 0 0 1 0 2 1
0 0 0 0 1 1 2

2
666666666666664

3
777777777777775

ðA:2Þ

and
>restart:
with(ListTools):
power:=proc(n,m,a,b)
local kappa,lambda,i,j,A,power;
for kappa from 1to n
do
lambda½kappa�≔ a + 2 ∗ b ∗ cos ðð2 ∗ kappa − 1Þ ∗ PiÞ/

2 ∗ n;
end do;
power:=[]:
for i from 1 to n
do
for j from 1 to n
do
A½m, i, j�≔ ð2/nÞ ∗ sumððlambda½k�Þm ∗ sin ðð2 ∗ k − 1Þ

∗ ð2 ∗ i − 1Þ ∗ PiÞ/4 ∗ nÞsin ðð2 ∗ k − 1Þ ∗ ð2 ∗ j − 1Þ ∗ PiÞ/4
∗ nÞ, k = 1::nÞ;

power:=FlattenOnce([power,A[m,i,j]]);
od;
od;
print(simplify(Matrix(n,n,power)));
end proc:
>power(5,1,0,1)

−1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 1

2
666666664

3
777777775

ðA:3Þ

>power(5,3,0,1)

−3 3 −1 1 0
3 −1 3 0 1
−1 3 0 3 1
1 0 3 1 3
0 1 1 3 3

2
666666664

3
777777775

ðA:4Þ
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