
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: zhuzhu3696@foxmail.com; 
 
Cite as: Zhu, Yingqing, Siqi Liu, and Zhiwen Zhu. 2024. “Evaluating Agricultural Production Efficiency in Jiangsu and Anhui 
Provinces: A Three-Stage DEA and Malmquist Index Approach”. Journal of Economics, Management and Trade 30 (12):33-50. 
https://doi.org/10.9734/jemt/2024/v30i121256. 
 

 
 

Journal of Economics, Management and Trade 
 
Volume 30, Issue 12, Page 33-50, 2024; Article no.JEMT.126717 
ISSN: 2456-9216 
(Past name: British Journal of Economics, Management & Trade, Past ISSN: 2278-098X) 

 

 

 

Evaluating Agricultural Production 
Efficiency in Jiangsu and Anhui 

Provinces: A Three-Stage DEA and 
Malmquist Index Approach 

 
Yingqing Zhu a*, Siqi Liu a and Zhiwen Zhu a 

 
a Business School, Huaiyin Institute of Technology, Huaian 223001, China. 

 
Authors’ contributions 

 
This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 
 

Article Information 
 

DOI: https://doi.org/10.9734/jemt/2024/v30i121256 
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer 

review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/126717 

 
 

Received: 15/09/2024 
Accepted: 19/11/2024 
Published: 25/11/2024 

 
 

ABSTRACT 
 

This study assesses the agricultural production efficiency of Jiangsu and Anhui Provinces from 
2018 to 2022, with a focus on the impact of the Yangtze River Delta Regional Integration 
Development Plan. Utilizing a three-stage Data Envelopment Analysis (DEA) model and the 
Malmquist index, the research controls for environmental factors and analyzes efficiency changes 
dynamically. The results indicate that Jiangsu achieved a higher rate of technological progress, with 
an average annual growth rate of 1.0066, which drove its overall productivity gains. In contrast, 
Anhui demonstrated substantial potential in scale efficiency, reflecting opportunities for future 
productivity improvements through optimized resource allocation. The regional integration plan 
appears to have played a pivotal role in advancing agricultural productivity in Jiangsu by facilitating 
technology-driven improvements. Findings suggest that while Jiangsu should continue to enhance 
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its technological capabilities, Anhui could focus on harnessing its scale efficiency potential to bridge 
the productivity gap between the two provinces. These insights underscore the significance of 
regional integration policies in fostering balanced agricultural development, promoting both 
technological progress and scale efficiency across different regional contexts. 
 

 
Keywords: Agricultural production efficiency; three-stage DEA model; Malmquist index; 

environmental factors. 
 

1. INTRODUCTION  
 
With the implementation of the Yangtze River 
Delta Regional Integration Development Plan, 
economic cooperation among provinces and 
cities within the region has significantly 
strengthened, deepening collaboration in 
scientific and technological innovation and 
promoting coordinated regional development. 
This integration has driven agricultural 
modernization, fostered balanced regional 
growth, and improved infrastructure and public 
services—all essential factors for enhancing 
agricultural production efficiency. Su et al. (2024) 
evaluated the level of regional integration within 
the Yangtze River Delta Urban Agglomeration 
(YRDUA) from 2005 to 2019, highlighting the 
critical role of integration in ensuring food 
security. Additionally, scholars have used the 
super-slacks-based measure (SBM) model to 
assess rural development efficiency (RDE) at the 
county level in the region from 2012 to 2021 (Wu 
& Chen, 2024). 
 
Despite these advancements, limited research 
specifically examines how regional integration 
policies impact agricultural efficiency in the 
Yangtze River Delta, leaving questions about the 
tangible effects of integration on agricultural 
productivity. Jiangsu and Anhui Provinces, as 
key agricultural contributors within the delta, 
provide valuable case studies for this exploration. 
Known as the “land of fish and rice,” Jiangsu is a 
vital agricultural hub, while Anhui plays a 
significant role as a primary agricultural base. 
Both provinces thus offer substantial research 
value in assessing how regional integration 
policies may enhance agricultural efficiency 
across different contexts within the delta. 
 
The study of agricultural production efficiency 
has a long-standing history, and many scholars, 
both domestically and internationally, have 
utilized various methodologies to assess 
agricultural efficiency. Among these, the Data 
Envelopment Analysis (DEA) model is widely 
used for measuring agricultural efficiency. The 
DEA approach dates back to Farrell’s 1957 study 

on British agriculture (Farrell, 1957). Since then, 
numerous scholars have applied the DEA model 
and its extensions to investigate agricultural 
production efficiency. Coluccia et al. (2020) 
employed traditional DEA to assess the eco-
efficiency of Italy’s agricultural sector, 
highlighting regional disparities. Kalli et al. (2024) 
used DEA to evaluate farmers’ productivity 
through technical efficiency (TE). The super-
efficiency DEA model, an extension of traditional 
DEA, allows some decision-making units (DMUs) 
to surpass an efficiency score of 1. Ma et al. 
(2021) used this model to analyze agricultural 
efficiency in China. The Malmquist index 
complements DEA by enabling dynamic 
efficiency analysis, addressing the limitation of 
traditional DEA, which is limited to static 
evaluations. Le and Mishra, among others, 
integrated the DEA model with the Malmquist 
index to conduct both dynamic and static 
analyses of agricultural production efficiency 
(Manogna & Mishra, 2022; Le et al., 2019). Shah 
et al. (2024) employed DEA and the Malmquist 
index to analyze the dynamic relationship 
between agricultural technological innovation and 
total-factor agricultural water usage efficiency 
(TFAWUE) across Chinese provinces between 
2000 and 2020, assessing overall water use 
efficiency. Zhang et al. (2024) further combined 
the super-efficiency DEA model with the 
Malmquist index to examine agricultural 
production efficiency. The three-stage DEA 
model has also been widely applied in 
agricultural efficiency studies, as it eliminates the 
influence of external environmental factors, 
thereby improving the accuracy of results. Yao & 
Wu (2022) utilized the three-stage DEA model to 
analyze the impact of green agricultural 
technology innovation on rural revitalization in 
Anhui Province. Yang & Shang (2020) applied 
the three-stage DEA to examine the agricultural 
efficiency of conservation tillage implementers, 
investigating the effects of environmental factors. 
Pan et al. (2022) integrated the three-stage DEA 
model with the Malmquist index to study 
agricultural production efficiency in the Yangtze 
River Economic Belt from 2010 to 2019 from 
both dynamic and static perspectives. 
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In summary, while the study of agricultural 
efficiency is well-established, there is a 
noticeable gap in comparative research on the 
agricultural production efficiency of Jiangsu and 
Anhui provinces using the three-stage DEA 
model and the Malmquist index within the context 
of the Yangtze River Delta regional integration. 
Given that the three-stage DEA model eliminates 
the interference of external environmental factors 
and the Malmquist index allows for dynamic 
analysis, this study will combine these two 
approaches to evaluate and compare the 
agricultural efficiency of Jiangsu and Anhui 
provinces. By removing external factors, the 
study will provide an accurate assessment of 
agricultural efficiency in both provinces. 
Furthermore, this research will explore how 
agricultural production efficiency in Jiangsu and 
Anhui has been affected by the implementation 
of the Yangtze River Delta Regional Integration 
Development Plan. Based on the evaluation 
results, this study will also identify the key issues 
in the current agricultural development of both 
provinces, offering recommendations to enhance 
agricultural efficiency. 
 

2. RESEARCH METHODS 
 

2.1 Three-stage DEA Model 
 

Fried et al. (2002) proposed an innovative 
evaluation model to effectively filter out the 
influence of environmental factors and other 
unintended random variables—excluding scale, 
technology, and management factors—on the 
assessment of production efficiency. This model, 
known as the three-stage Data Envelopment 
Analysis (DEA) model, introduced a significant 
methodological advancement in efficiency 
measurement. The core innovation of this model 
lies in its use of the slack variables inherent in 
the standard DEA model to adjust input values. 
This adjustment allows for the comparison of 
decision-making units (DMUs) under a 
hypothetical uniform external environment. 
Following this adjustment, the conventional DEA 
model is re-applied to re-estimate the technical 
efficiency of each DMU. Through this process, 
the model effectively eliminates the distorting 
effects of environmental factors, providing a 
more accurate and reliable depiction of the 
inherent efficiency characteristics of each 
decision-making unit. 
 

2.1.1 The first stage 
 

This stage is the initial efficiency measurement 
stage of the DEA model, which obtains the initial 

technical efficiency value through the unadjusted 
efficiency. In 1978, Charnes et al. (1978) 
introduced the CCR model, which operates 
under the assumption of constant returns to 
scale (CRS). Building on this, in 1984, Banker et 
al. (1984) proposed the BCC model, which 
relaxes the constant returns to scale assumption 
to allow for variable returns to scale (VRS). The 
mathematical formulation of these models can be 
expressed as: 
 
𝑇𝐸 = 𝑆𝐸 × 𝑃𝑇𝐸                                                 (1) 
 
TE stands for technical efficiency; SE stands for 
scale efficiency; PTE stands for pure technical 
efficiency. 
 
2.1.2 The second stage 
 
This stage adjusts the impact of environmental 
and random factors on efficiency to obtain more 
accurate efficiency results. By establishing a 
similar Stochastic Frontier Analysis (SFA) model, 
the slack variables obtained in the first stage are 
decomposed into three components: external 
environmental factors, random factors, and 
management factors. Traditional DEA models do 
not differentiate between these three factors, 
making it difficult to determine the cause of 
inefficiency. However, through a second-stage 
SFA-like regression, the interference from 
external environmental and random factors can 
be filtered out, thus isolating their influence on 
efficiency scores. The corresponding expression 
is as follows: 
 

𝑠𝑖𝑘 = 𝑓𝑖(𝑧𝑘; 𝛽
𝑖) + 𝑣𝑖𝑘 + 𝜇𝑖𝑘                                (2) 

 

In the formula, i = 1,2,…,m; k = 1,2,…,n; 
−
𝑣𝑖𝑘

 is 

the estimated value of the random interference 
term. 
 

2.1.3 The third stage 
 

This stage is to use DEA to measure           
efficiency again after adjusting for environmental 
and random factors to determine the true 
technical efficiency. The efficiency value 
obtained in this stage is regarded as the final 
efficiency value after adjustment. The input 
variables obtained after the second-stage SFA 
regression are used to replace the original input 
variables, and the original output of the first stage 
is still used as the output variable to perform the 
DEA-BCC model operation to obtain a more 
realistic efficiency value after eliminating external 
factors. 
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2.2 Malmquist Index 
 

The Malmquist index can analyze the changes in 
comprehensive efficiency, technical efficiency 
and technological progress from a dynamic 
perspective (Zhou et al., 2024). The 
corresponding expression is as follows: 
 

𝑀(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡, 𝑦𝑡) = [
𝐷𝑡(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡(𝑥𝑡,𝑦𝑡)
×

𝐷𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1(𝑥𝑡,𝑦𝑡)
]

1

2
     (3) 

 

(x,y)represent input variables and output 

variables respectively; 𝐷𝑡 和 𝐷𝑡+1  represent the 

distance equations at period t and period t+1 
respectively. 
 

The Malmquist index analysis model can 
decompose total factor productivity (TFPCH) into 
technological progress (TECCH) and technical 
efficiency (TECH). 
 

𝑇𝐹𝑃𝐶𝐻𝑡
𝑡+1 = 𝑇𝐸𝐶𝐶𝐻𝑡

𝑡+1 × 𝑇𝐸𝐶𝐻𝑡
𝑡+1          (4) 

 

3. RESEARCH AREA AND EVALUATION 
INDICATORS 

 

3.1 Research Area and Data Sources 
 

Jiangsu Province consists of 13 prefecture-level 
cities, while Anhui Province includes 16 
prefecture-level cities, for a total of 29 cities. This 
study utilizes data from these 29 cities covering 
the period from 2018 to 2022. To ensure 
consistency, all data used in this research are 
sourced from the Jiangsu Statistical Yearbook 
and the respective statistical yearbooks of its 
prefecture-level cities, the Anhui Statistical 
Yearbook and the respective statistical 
yearbooks of its prefecture-level cities, as well as 
the EPS database. 
 

3.2 Indicator System 
 
This study employs the three-stage DEA model 
and the Malmquist index to analyze agricultural 
production efficiency from both static and 
dynamic perspectives. Therefore, it is necessary 
to define the relevant input indicators, output 
indicators, and environmental variables. Drawing 
on previous studies and considering factors such 
as the exogeneity of environmental variables, 
data availability, and representativeness, this 
study ultimately identifies a set of 2 output 
indicators, 4 input indicators, and 3 
environmental variables as the indicator system 
for the analysis (see Table 1 for details) (Guo et 
al., 2023; Hsu et al., 2023; Zhou et al., 2023). 

3.2.1 Input and output indicators 
 
When conducting Data Envelopment Analysis 
(DEA), four key principles are generally followed: 
First, there should be no linear relationship 
between input and output indicators. Second, the 
number of decision-making units (DMUs) should 
be at least twice the sum of the input and output 
indicators. Third, the selected input and output 
indicators must be both available and 
representative (Yao & Zhu, 2019). Based on 
these principles and a review of relevant 
literature, this study selects total agricultural 
output value and grain production as output 
indicators. For the input indicators, four 
dimensions are considered: labor input, capital 
input, technology input, and land input. 
Specifically, rural population represents labor 
input, expenditures on agriculture, forestry, and 
water affairs represent capital input, total power 
of agricultural machinery represents technology 
input, and total sown area of crops represents 
land input. 
 
3.2.2 Environmental variables 
 
The selection of environmental variables should 
adhere to the principle of exogeneity, meaning 
that the chosen variables should influence 
agricultural production efficiency without being 
subject to the control of the decision-making 
units. Based on the review of relevant literature 
and guided by principles such as exogeneity and 
data availability, this study considers three 
dimensions of environmental factors: farmers’ 
living standards, urbanization level, and 
transportation accessibility. Specifically, the per 
capita net income of rural residents represents 
farmers’ living standards, the proportion of the 
urban population reflects the level of 
urbanization, and the total road mileage serves 
as a proxy for transportation accessibility. To 
ensure comparability and eliminate the impact of 
differing measurement units, all environmental 
variables were standardized for analysis. 
 

3.2.3 Pearson correlation coefficient test 
 
In the three-stage DEA model, an increase in 
input variables should not lead to a decrease in 
output variables, a requirement known as the 
“principle of isotonicity.” DEA uses linear 
programming to measure efficiency, while the 
Pearson correlation coefficient is used to assess 
the linear relationship between variables (Song & 
Ma, 2024). Accordingly, this study employs 
Pearson correlation tests using Stata 17.0
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Table 1. Agricultural production efficiency research indicator system 
 

Indicator type Indicator name Indicator meaning Unit 

Input Indicators Grain production Food production level 10,000 tons 
Total agricultural output value Direct agricultural production level 100 million yuan 

Output Indicators  Total sown area of crops Land input Thousand hectares 
Total power of agricultural machinery Technology input 10,000 kilowatts 
Rural population Labor input 10,000 people 
Agriculture, forestry and water affairs expenditure Capital input 100 million yuan 

Environmental 
variables 

The per capita net income of rural residents Farmers’ living standards Yuan 
The proportion of the urban population Urbanization level % 
The total road mileage Transportation accessibility Kilometer 

 
Table 2. Pearson correlation coefficient test 

 

  Grain 
production 

Total 
agricultural 
output value 

Total 
sown area 
of crops 

Total power 
of 
agricultural 
machinery 

Rural 
population 

Agriculture, 
forestry and water 
affairs 
expenditure 

Grain production 1.000            
Total agricultural output value 0.758*** 1.000          
Total sown area of crops 0.968*** 0.756*** 1.000        
Total power of agricultural machinery 0.887*** 0.676*** 0.888*** 1.000      
Rural population 0.779*** 0.612*** 0.854*** 0.684*** 1.000    
Agriculture, forestry and water affairs expenditure 0.478*** 0.739*** 0.480*** 0.427*** 0.520*** 1.000  

Note:*indicates significance at the 10% level,**indicates significance at the 5% level,***indicates significance at the 1% level, and the same below 
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software to examine the relationships between 
the input and output variables (see Table 2). As 
shown in the table, all correlation coefficients 
between input and output variables are positive 
and statistically significant at the 1% level, 
confirming that the variables meet the 
“isotonicity” principle. 
 

4. RESULTS AND ANALYSIS 
 

4.1 Analysis of DEA Results in the First 
Stage 

 

The original input and output variables for the 29 
prefecture-level cities in Jiangsu and Anhui 
provinces from 2018 to 2022 were entered into 
DEAP 2.1 software to calculate their technical 
efficiency, pure technical efficiency, and scale 
efficiency in the first-stage DEA analysis. Due to 
space constraints, this paper only presents data 
for 2018 and 2022, as shown in Table 3. 
 

On the whole, the average technical efficiency, 
pure technical efficiency, and scale efficiency of 
Jiangsu Province in 2018 were 0.972, 0.975, and 
0.996, respectively, and in 2022, these values 
increased to 0.979, 0.984, and 0.996, 
respectively. In contrast, for Anhui Province, the 
average technical efficiency, pure technical 
efficiency, and scale efficiency in 2018 were 
0.805, 0.912, and 0.889, respectively, and in 
2022, they had changed to 0.801, 0.884, and 
0.911, respectively. These results indicate that 
from 2018 to 2022, Jiangsu consistently 
outperformed Anhui in terms of technical 
efficiency, pure technical efficiency, and scale 
efficiency. Moreover, the gap in technical and 
pure technical efficiency between the two 
provinces widened over this period, while the gap 
in scale efficiency narrowed. 
 

At the city level, in 2018, eight cities in Jiangsu 
achieved a technical efficiency score of 1, 
indicating DEA efficiency, while the remaining 
five cities had scores above 0.83, indicating 
relatively high efficiency. By 2022, ten cities in 
Jiangsu achieved DEA efficiency, with only 
Suzhou, Suqian, and Nantong falling short, 
though their efficiency scores still exceeded 0.87, 
indicating relatively high efficiency. In terms of 
scale efficiency, the number of cities in Jiangsu 
with decreasing returns to scale decreased from 
three in 2018 to two in 2022, while the number of 
cities with increasing returns to scale fell from 
two to one. 
 
In Anhui Province, only Huainan and Bozhou 
achieved DEA efficiency in 2018, with the lowest 

technical efficiency score at 0.581 in Anqing. By 
2022, only Bozhou achieved DEA efficiency, and 
the lowest score was still Anqing, though it had 
improved to 0.594. Regarding scale efficiency, 
four cities in Anhui experienced decreasing 
returns to scale in 2018, but by 2022, all cities 
except Bozhou exhibited increasing returns to 
scale, suggesting significant growth potential. 
Despite fewer cities in Anhui achieving DEA 
efficiency and generally lower technical efficiency 
scores compared to Jiangsu, the majority of 
cities in Anhui showed increasing returns to 
scale, indicating substantial future development 
potential. 
 

Conclusion: In conclusion, the first-stage DEA 
results indicate that from 2018 to 2022, Anhui 
lagged behind Jiangsu in terms of technical 
efficiency, pure technical efficiency, and scale 
efficiency. Jiangsu had a significantly higher 
number of cities achieving DEA efficiency. 
However, many cities in Anhui demonstrated 
increasing returns to scale, reflecting significant 
potential for agricultural development. It is 
important to note that these initial results may be 
influenced by external environmental factors and 
random disturbances, which may distort the true 
efficiency. Therefore, the next step in this study 
will involve analyzing the slack variables to 
remove the effects of external factors and 
random disturbances. 
 

4.2 Analysis of SFA Results in the 
Second Stage 

 

The second stage primarily involves using 
Stochastic Frontier Analysis (SFA) regression to 
decompose environmental factors, management 
inefficiency, and random error terms, thus 
eliminating external environmental factors to 
obtain new input variables. In this stage, the 
slack variables obtained from the first-stage DEA 
are used as dependent variables, while the 
standardized rural per capita net income, 
urbanization rate, and road mileage are selected 
as independent variables representing 
environmental factors. The SFA regression is 
conducted using Frontier 4.1 software, allowing 
for the removal of external environmental 
influences. 
 

As shown in Table 4, most of the regression 
coefficients pass the 10% significance level in 
the t-test, indicating that the environmental 
variables selected in this study have a significant 
impact on the slack variables of the input factors. 
This confirms that the selected environmental 
variables are appropriate for the analysis. 
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Moreover, the one-sided likelihood ratio (LR) 
tests all pass the 1% significance level, further 
validating the use of the SFA model for the 
second-stage regression. Additionally, the 
gamma values in Table 2 are all close to 1 and 
pass the 1% significance test, indicating that 
management inefficiency plays a dominant role 
in explaining the slack in the input variables. This 
suggests that management inefficiency is the 
primary cause of the observed input 
redundancies, making it essential to use the SFA 
model to separate the impact of external 
environmental factors and random disturbances 
on agricultural production efficiency. 
 

A positive regression coefficient for an 
environmental variable implies that an increase 
in this variable tends to lead to greater input 
inefficiency, whereas a negative coefficient 
suggests that higher values of the environmental 
variable are conducive to improving agricultural 
production efficiency. 
 

(1) Rural Per Capita Net Income: This variable 
represents the living standards of rural 
residents. It has passed the significance 
test for most of the slack input variables, 
with all coefficients being positive. As 
farmers’ living standards and income levels 
increase, they are likely to invest more 
human and material resources into 
agricultural production, potentially leading 
to input redundancy, which may hinder 
improvements in agricultural production 
efficiency. 

(2) Urbanization Rate: The urban population 
ratio represents the level of urbanization. It 
did not pass the significance test for the 
slack input variables related to rural labor 
and expenditures on agriculture, forestry, 
and water resources. However, it did pass 
for the slack variables of total sown area 
and total agricultural machinery power. 
Additionally, the coefficients for all four 
slack variables are negative. This indicates 
that higher levels of urbanization can 
enhance resource allocation capabilities 
and optimize input levels, thereby 
improving agricultural production 
efficiency. 

(3) Road Mileage: Road mileage serves as a 
proxy for the convenience of 
transportation. It passed the significance 
test for all four slack input variables, and 
the coefficients are negative. This 
suggests that an increase in road mileage 
improves transportation convenience in 
rural areas, significantly reducing the time 

and costs associated with transporting 
agricultural products. As a result, it has a 
positive impact on agricultural production 
efficiency. 

 
In summary, the environmental variables have a 
significant impact on the input variables, as 
confirmed by the likelihood ratio (LR) tests, all of 
which pass the 1% significance level. 
Additionally, the gamma values are close to 1 
and have passed the 1% significance test, 
indicating that management inefficiency plays a 
dominant role. Therefore, it is essential to adjust 
the input variables for the 29 prefecture-level 
cities in Jiangsu and Anhui provinces from 2018 
to 2022, placing them under the same external 
environmental conditions and stochastic 
influences. This adjustment aims to obtain more 
accurate and reliable estimates of agricultural 
production efficiency. 
 

4.3 Analysis of DEA Results in the Third 
Stage 

 
After inputting the adjusted input variables and 
the original output variables for the 29 prefecture-
level cities in Jiangsu and Anhui provinces from 
2018 to 2022 into DEAP 2.1, we obtained the 
adjusted technical efficiency, pure technical 
efficiency, and scale efficiency values in the third 
stage of the DEA analysis. The results are shown 
in Table 5. 
 
First, from an overall perspective, the adjusted 
mean technical efficiency for Jiangsu Province in 
2018 was 0.975, the pure technical efficiency 
was 0.984, and the scale efficiency was 0.990. In 
2022, the adjusted mean technical efficiency was 
0.983, with pure technical efficiency at 0.989 and 
scale efficiency at 0.994. Compared to the pre-
adjustment results, technical efficiency increased 
over the 2018-2022 period, with a notable rise in 
pure technical efficiency, while scale efficiency 
showed a slight decline. For Anhui Province, the 
adjusted mean technical efficiency, pure 
technical efficiency, and scale efficiency in 2018 
were 0.769, 0.925, and 0.840, respectively, while 
in 2022, they were 0.786, 0.913, and 0.867, 
respectively. In contrast to Jiangsu, Anhui’s 
technical efficiency decreased post-adjustment 
over the same period, despite a rise in pure 
technical efficiency, as scale efficiency declined. 
These results indicate that, while both provinces 
experienced improvements in pure technical 
efficiency, the differences in the rate of change in 
technical and scale efficiencies led to an 
increase in Jiangsu’s overall technical efficiency, 
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while Anhui’s overall technical efficiency 
declined. Notably, the efficiency gap between the 
two provinces widened post-adjustment, with 
Jiangsu continuing to outperform Anhui in 
technical efficiency, pure technical efficiency, and 
scale efficiency. Although the pure technical 
efficiency gap narrowed, the scale efficiency gap 
expanded. 
 
As shown in Fig. 1, post-adjustment, most cities 
in Jiangsu either maintained or improved their 
technical efficiency from 2018 to 2022, with a few 
experiencing declines. However, the downward 
trend observed in 2018 improved by 2022. In 
Anhui, technical efficiency declined in most cities 
after adjustment, with only a few maintaining or 
improving efficiency levels, though this 
downward trend also showed signs of 
improvement in 2022. As shown in Table 5, in 
2018, after adjustments, seven cities in Jiangsu 
achieved DEA efficiency, with Changzhou no 
longer DEA-efficient compared to the pre-
adjustment results. The remaining cities had 
technical efficiency values above 0.89, indicating 
improvement. In 2022, nine cities in Jiangsu 
were DEA-efficient post-adjustment, with 
Changzhou again falling short of DEA efficiency. 
However, all other cities had technical efficiency 
values above 0.91, an improvement over pre-
adjustment levels. For Anhui, the number of 
DEA-efficient cities remained unchanged, with 
only Huainan and Bozhou achieving efficiency in 
2018, while the city with the lowest technical 
efficiency was still Anqing at 0.517, a decline 
compared to the pre-adjustment results. In 2022, 
only Bozhou maintained DEA efficiency, with the 
lowest technical efficiency shifting from Anqing to 
Huangshan at 0.609, marking an improvement 
over 2018. Furthermore, from 2018 to 2022, the 
number of cities with increasing returns to scale 
in Jiangsu shifted from four to two, while those 
with decreasing returns dropped from two to one. 
Meanwhile, in Anhui, the number of cities 
exhibiting increasing returns to scale rose, while 
the number of cities with decreasing returns to 
scale declined, indicating greater agricultural 
production potential. 
 
Overall, the adjusted results for 2018-2022 
reveal that agricultural production efficiency in 
Jiangsu continues to outperform Anhui, though 
Anhui has demonstrated increasing returns to 
scale, indicating growing agricultural 
development potential. The adjustments also 
show that pure technical efficiency increased for 
both provinces, while scale efficiency generally 
declined. Due to varying degrees of change in 

pure technical and scale efficiencies, Jiangsu’s 
technical efficiency improved post-adjustment, 
while Anhui’s declined. Moreover, the changes in 
agricultural production efficiency across cities in 
both provinces underscore the significance of 
external environmental factors and stochastic 
disturbances, which were isolated in the second 
stage through the SFA regression. This further 
validates the necessity of removing external 
environmental influences and highlights that both 
provinces, especially Anhui, have considerable 
room for improvement in scale efficiency. 
 
In conclusion, the post-adjustment results 
indicate that Jiangsu Province’s agricultural 
production efficiency continues to surpass that of 
Anhui Province. Additionally, the results from the 
second stage of the SFA regression reveal 
inefficiencies in resource allocation in both 
provinces, with varying degrees of input 
redundancy and resource waste across cities. 
This underscores the importance of improving 
not only pure technical efficiency but also scale 
efficiency to enhance overall agricultural 
production efficiency. 
 

4.4 Malmquist Index Results Analysis 
 
Since the three-stage DEA model only provides a 
static analysis of agricultural production 
efficiency, this study employs the Malmquist 
Index model using DEAP 2.1 software to 
calculate the total factor productivity (TFP) for 
Jiangsu and Anhui provinces from 2018 to 2022. 
The adjusted input variables from the second 
stage and the original output variables are used. 
The calculated TFP (TFPCH) is further 
decomposed into technological progress (TECH) 
and technical efficiency change (TECCH) to 
conduct a dynamic analysis of agricultural 
production efficiency in both provinces. If the 
calculated TFP is less than 1, it indicates a 
decline in productivity from period t to t+1, 
whereas a value greater than 1 indicates an 
increase in productivity. 
 

As shown in Table 6 and Fig. 2, during the 2018-
2022 period, the average TFP, technical 
efficiency, and technological progress for Jiangsu 
Province were 1.0087, 1.0022, and 1.0066, 
respectively. This indicates that Jiangsu’s 
agricultural TFP increased by 0.87% over this 
period, with technical efficiency and technological 
progress contributing increases of 0.22% and 
0.66%, respectively. Although the overall 
improvement was modest, both technical 
efficiency and technological progress played 
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roles in driving TFP growth. On a year-by-year 
basis, the largest increase in TFP occurred 
between 2019 and 2020, with a value of 1.0363, 
while a decline occurred between 2018 and 
2019, primarily due to a drop in technological 
progress. In other years, Jiangsu’s agricultural 
TFP showed consistent improvement. 
 

In contrast, Anhui Province’s average TFP, 
technical efficiency, and technological progress 
values during the same period were 0.994, 
1.0081, and 0.9922, respectively, indicating a 
slight decline in TFP, mainly driven by a 
decrease in technological progress. While 
Anhui’s agricultural TFP improved in most years, 
a decline was observed between 2019 and 2020. 
Overall, except for the 2018-2019 period, 
Jiangsu consistently outperformed Anhui in TFP, 
as shown in Table 6 and Fig. 2. In terms of 
technical efficiency, the gap between the two 
provinces was small, with Anhui even surpassing 
Jiangsu during 2021-2022. However, Jiangsu 
maintained a significant advantage in 
technological progress throughout the period, 
except in 2018-2019. This suggests that 
Jiangsu’s higher TFP is largely attributable to its 
superior technological progress compared to 
Anhui. 
 

Additionally, both provinces saw increases in 
TFP in all years except for Jiangsu in 2018-2019 

and Anhui in 2019-2020. A key driver of these 
improvements was the implementation of the 
Yangtze River Delta Regional Integration 
Development Plan in 2019, which promoted 
agricultural integration in the region and 
contributed to higher TFP in both Jiangsu and 
Anhui from 2020 to 2022. 
 

In conclusion, the analysis reveals that Jiangsu’s 
agricultural TFP exhibited overall improvement 
from 2018 to 2022, with balanced progress in 
both efficiency and technological advancement. 
In contrast, Anhui experienced a decline in TFP, 
primarily due to a downward trend in 
technological progress. The comparative 
analysis between Jiangsu and Anhui indicates 
that Jiangsu’s advantage in TFP is primarily 
driven by its superior technological progress 
during this period. To improve its agricultural 
TFP, Anhui should focus not only on enhancing 
technical efficiency but also on fostering 
technological progress by investing more 
resources in innovation. Finally, the 
implementation of the Yangtze River Delta 
Regional Integration Development Plan has had 
a significant positive impact on agricultural 
production efficiency in the region, as evidenced 
by the increase in TFP in both provinces from 
2020 to 2022, underscoring the role of policy 
support in driving agricultural production 
efficiency growth. 

 

 
 

Fig. 1. Comparison of agricultural production efficiency of 29 prefecture-level cities in Jiangsu 
Province and Anhui Province before and after the adjustment from 2018 to 2022 
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Table 3. Agricultural production efficiency of cities in Jiangsu and Anhui provinces in the first phase from 2018 to 2022 
 

 
 

2018 2022 

Province City Technical 

efficiency 

Pure 

technical 

efficiency 

Scale 

efficiency 

Scale 

efficiency 

characteristic 

Technical 

efficiency 

Pure 

technical 

efficiency 

Scale 

efficiency 

Scale 

efficiency 

characteristic 

J
ia

n
g
s
u
 P

ro
v
in

c
e

 

Xuzhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Huaian 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Yancheng 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Lianyungang 0.972 0.983 0.988 irs 1.000 1.000 1.000 - 

Suqian 0.899 0.900 0.998 drs 0.907 0.912 0.995 irs 

Nanjing 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Suzhou 0.929 0.944 0.985 drs 0.948 0.972 0.975 drs 

Wuxi 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Changzhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Zhenjiang 0.996 1.000 0.996 irs 1.000 1.000 1.000 - 

Yangzhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Taizhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Nantong 0.836 0.848 0.986 drs 0.877 0.902 0.972 drs 

Average value of Jiangsu 

Province 

0.972 0.975 0.996  0.979 0.984 0.996  

A
n
h

u
i P

ro
v
in

c
e

 

Suzhou 0.777 0.799 0.973 drs 0.801 0.803 0.998 irs 

Huaibei 0.877 1.000 0.877 irs 0.924 1.000 0.924 irs 

Bengbu 0.989 1.000 0.989 irs 0.942 0.980 0.961 irs 

Fuyang 0.823 0.824 0.998 drs 0.870 0.874 0.996 irs 

Huainan 1.000 1.000 1.000 - 0.903 0.941 0.960 irs 

Bozhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Hefei 0.734 0.735 0.998 irs 0.730 0.749 0.975 irs 

Luan 0.793 0.795 0.998 drs 0.790 0.796 0.993 irs 

Chuzhou 0.914 1.000 0.914 drs 0.956 0.966 0.989 irs 

Anqing 0.581 0.618 0.940 irs 0.594 0.621 0.956 irs 

Huangshan 0.650 1.000 0.650 irs 0.686 1.000 0.686 irs 

Wuhu 0.739 0.859 0.860 irs 0.700 0.763 0.918 irs 

Maanshan 0.873 1.000 0.873 irs 0.758 0.943 0.804 irs 
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2018 2022 

Province City Technical 

efficiency 

Pure 

technical 

efficiency 

Scale 

efficiency 

Scale 

efficiency 

characteristic 

Technical 

efficiency 

Pure 

technical 

efficiency 

Scale 

efficiency 

Scale 

efficiency 

characteristic 

Tongling 0.711 1.000 0.711 irs 0.773 1.000 0.773 irs 

Xuancheng 0.770 0.963 0.800 irs 0.739 0.805 0.918 irs 

Chizhou 0.650 1.000 0.650 irs 0.653 0.898 0.727 irs 

Average value of Anhui Province 0.805 0.912 0.889  0.801 0.884 0.911  
Note: irs means increasing returns to scale, drs means decreasing returns to scale, - means constant returns to scale, the same below. 

 
Table 4. Second-stage SFA estimation results 

  
Total sown area of 

crops 

Total power of agricultural 

machinery 

Rural population Agriculture, 

forestry and water 

affairs expenditure 

Constant -11.394***(-2.745) -12.747**(-2.588) -6.955*** (-2.776) -2.310** (-2.019) 

The per capita net income of rural residents 11.131***(4.608) 11.239***(3.629) 3.806** (2.422) 0.608(0.759) 

The proportion of the urban population -10.627***(-4.025) -10.533***(-3.132) -2.555(-1.502) -1.110(-1.268) 

The total road mileage -5.538***(-3.072) -4.524*(-1.952) -2.651** (-2.329) -1.401** (-2.228) 

sigma-squared 14237.060***(3689.933) 10428.977***(10236.809) 6899.519*** (27.144) 1156.076*** (3.063) 

gamma 0.977(326.900) 0.949***(148.481) 0.980*** (315.866) 0.964*** (69.091) 

Log value -679.129 -705.028 -614.458 -511.222 

LR test 305.355*** 213.020*** 329.295*** 170.600*** 
Note: The corresponding estimated t-statistics are in brackets 
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Table 5. Adjusted agricultural production efficiency of cities in Jiangsu and Anhui provinces from 2018 to 2022 
 

 
 

2018 2022 

Province City Technical 

efficiency 

Pure 

technical 

efficiency 

Scale 

efficiency 

Scale 

efficiency 

characteristic 

Technical 

efficiency 

Pure 

technical 

efficiency 

Scale 

efficiency 

Scale 

efficiency 

characteristic 

J
ia

n
g
s
u
 P

ro
v
in

c
e

 

Xuzhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Huaian 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Yancheng 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Lianyungang 0.974 0.996 0.978 irs 1.000 1.000 1.000 - 

Suqian 0.917 0.920 0.996 irs 0.910 0.925 0.984 irs 

Nanjing 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Suzhou 0.979 0.979 0.999 drs 0.984 0.986 0.999 drs 

Wuxi 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Changzhou 0.966 1.000 0.966 irs 0.948 1.000 0.948 irs 

Zhenjiang 0.941 1.000 0.941 irs 1.000 1.000 1.000 - 

Yangzhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Taizhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Nantong 0.894 0.898 0.996 drs 0.931 0.941 0.989 drs 

Average value of Jiangsu 

Province 

0.975 0.984 0.990  0.983 0.989 0.994  

A
n
h

u
i P

ro
v
in

c
e

 

Suzhou 0.872 0.873 0.999 drs 0.833 0.843 0.987 irs 

Huaibei 0.811 1.000 0.811 irs 0.827 1.000 0.827 irs 

Bengbu 0.909 1.000 0.909 irs 0.915 0.990 0.924 irs 

Fuyang 0.827 0.834 0.992 irs 0.896 0.910 0.986 irs 

Huainan 1.000 1.000 1.000 - 0.902 0.966 0.933 irs 

Bozhou 1.000 1.000 1.000 - 1.000 1.000 1.000 - 

Hefei 0.732 0.744 0.985 irs 0.750 0.789 0.951 irs 

Luan 0.789 0.794 0.993 irs 0.800 0.815 0.981 irs 

Chuzhou 0.959 1.000 0.959 drs 0.961 0.975 0.986 irs 

Anqing 0.589 0.663 0.889 irs 0.622 0.668 0.932 irs 

Huangshan 0.517 1.000 0.517 irs 0.609 1.000 0.609 irs 

Wuhu 0.690 0.912 0.756 irs 0.722 0.835 0.865 irs 

Maanshan 0.716 1.000 0.716 irs 0.740 0.980 0.755 irs 
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2018 2022 

Province City Technical 

efficiency 

Pure 

technical 

efficiency 

Scale 

efficiency 

Scale 

efficiency 

characteristic 

Technical 

efficiency 

Pure 

technical 

efficiency 

Scale 

efficiency 

Scale 

efficiency 

characteristic 

Tongling 0.592 1.000 0.592 irs 0.624 1.000 0.624 irs 

Xuancheng 0.730 0.983 0.742 irs 0.747 0.869 0.859 irs 

Chizhou 0.574 1.000 0.574 irs 0.628 0.971 0.647 irs 

Average value of Anhui Province 0.769 0.925 0.840  0.786 0.913 0.867  

 
Table 6. Total factor productivity of Jiangsu Province and Anhui Province from 2018 to 2022 

 

Year Province Total Factor 

productivity 

Technical 

efficiency 

Technological 

advancement 

2018-2019 Jiangsu Province 0.945  1.002  0.943  

Anhui Province 1.021  1.025  0.997  

2019-2020 Jiangsu Province 1.036  1.010  1.026  

Anhui Province 0.958  0.996  0.962  

2020-2021 Jiangsu Province 1.033  0.993  1.040  

Anhui Province 1.018  0.991  1.029  

2021-2022 Jiangsu Province 1.021  1.004  1.017  

Anhui Province 1.001  1.021  0.981  

Average value Average value of Jiangsu Province 1.009 1.002 1.007 

Average value of Anhui Province 0.999 1.008 0.992 
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Fig. 2. Total factor productivity of Jiangsu and Anhui provinces from 2018 to 2022 

 
5. DISCUSSION AND RECOMMENDATION 
 

5.1 Discussion and Outlook 
 
Firstly, this paper applies a three-stage DEA 
model to study agricultural production efficiency 
in 29 prefecture-level cities in Jiangsu and Anhui, 
two key agricultural provinces, from 2018 to 
2022. By eliminating external environmental 
factors and random disturbances, the study 
places these cities in the same external 
environment and adjusts for luck factors, leading 
to more accurate measurements of agricultural 
production efficiency. The results show that 
Jiangsu consistently outperformed Anhui in 
agricultural production efficiency, whether in the 
initial stage or after removing external 
environmental factors in the third stage. 
Specifically, Jiangsu surpassed Anhui in terms of 
technical efficiency, pure technical efficiency, and 
scale efficiency. This is largely due to Jiangsu’s 
status as an economically developed province in 
eastern China, which enables it to attract 
advanced technologies, talent, and stronger 
policy support, giving it an overall advantage in 
agricultural production efficiency. The third-stage 
results further reveal that after adjusting for 
external factors, both Jiangsu and Anhui saw 
improvements in pure technical efficiency, while 
scale efficiency declined. However, the differing 
degrees of change in pure technical efficiency 
and scale efficiency between the two provinces 
led to an increase in adjusted technical efficiency 
for Jiangsu and a decline for Anhui. Moreover, in 

both provinces, the increase in the number of 
cities exhibiting increasing returns to scale, 
coupled with a reduction in cities showing 
decreasing returns to scale, suggests a positive 
shift in the production potential across these 
regions. This trend indicates that an increasing 
number of cities are operating at a level where 
output can grow more than proportionally to input 
expansions, highlighting the efficiency gains that 
could be achieved through optimized resource 
allocation and scale adjustments. The reduction 
in cities with decreasing returns to scale further 
underscores the potential for enhanced 
agricultural productivity, as fewer regions face 
inefficiencies related to overextension or 
suboptimal scaling, paving the way for strategic 
improvements in agricultural output across 
Jiangsu and Anhui. These findings affirm the 
appropriateness of employing SFA regression to 
control for external factors, while also highlighting 
the significant potential for further improvement 
in scale efficiency in both provinces. 
 
Secondly, the study utilizes the Malmquist Index 
model to calculate total factor productivity (TFP) 
for Jiangsu and Anhui from 2018 to 2022, based 
on the adjusted input variables from the second 
stage and the original output variables. The 
results indicate that, during this period, Jiangsu 
experienced improvements in TFP, technological 
progress, and changes in technical efficiency, 
whereas Anhui saw a decline in TFP, primarily 
due to a decrease in its rate of technological 
progress. Jiangsu’s superior rate of technological 
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progress allowed it to maintain an overall 
advantage in TFP over Anhui. Jiangsu, as an 
economically advanced region, benefits from 
substantial investments in agricultural research 
and development, robust institutional support, 
and access to modern infrastructure, which 
collectively enhance its capacity for adopting 
innovative farming techniques and maintaining 
steady improvements in productivity. In contrast, 
Anhui’s comparatively limited financial resources 
and infrastructural development restrict its 
access to new technologies and innovations, 
hindering its ability to advance at a similar pace. 
This resource and support disparity ultimately 
contributes to the observed differences in 
technological progress and efficiency changes 
between the two provinces, solidifying Jiangsu’s 
TFP advantage over Anhui during the study 
period. Furthermore, the study finds that while 
both provinces experienced TFP values below 1 
in some of the earlier years, indicating declines in 
productivity, from 2020 to 2022, their TFP values 
exceeded 1, signaling growth in overall 
productivity levels. This improvement suggests 
that the implementation of initiatives such as the 
Yangtze River Delta Regional Integration 
Development Plan in 2019 played a pivotal role 
in promoting coordinated agricultural 
development across Jiangsu and Anhui. By 
fostering closer regional collaboration, enhancing 
resource-sharing mechanisms, and creating a 
more supportive policy environment, this plan 
effectively addressed some of the systemic 
barriers that had previously hindered agricultural 
productivity in the region. As a result, both 
provinces saw significant advancements in their 
agricultural sectors, which not only boosted 
production efficiency but also contributed to a 
more balanced and sustainable model of 
agricultural development across the Yangtze 
River Delta. 
 
In summary, Jiangsu consistently outperformed 
Anhui in agricultural production efficiency from 
2018 to 2022 due to its higher levels of 
technological progress and overall resource 
advantages. Additionally, regional policy 
initiatives aimed at promoting integration and 
collaboration, such as the Yangtze River Delta 
Regional Integration Development Plan, played a 
crucial role in boosting agricultural production 
efficiency in both provinces, particularly in the 
latter years of the study period. From a practical 
standpoint, the results emphasize the need for 
tailored strategies in improving agricultural 
efficiency. For Jiangsu, with its already high 
efficiency, the focus should be on sustaining and 

enhancing technological progress and fine-tuning 
scale efficiency. Anhui, in contrast, should 
prioritize technological innovation and 
infrastructure improvements to close the 
efficiency gap with Jiangsu. The Yangtze River 
Delta Regional Integration Development Plan 
has evidently contributed positively to these 
efforts by facilitating resource sharing and 
collaboration across provinces, a policy whose 
influence is reflected in the observed efficiency 
improvements from 2020 onwards. 
 
Despite these contributions, the study has some 
limitations. First, while the three-stage DEA 
model addresses environmental influences, it 
may not fully capture the complexities of policy 
impact and economic interactions within the 
Yangtze River Delta. Second, our reliance on 
historical data from 2018 to 2022, though recent, 
may not reflect ongoing changes or the long-term 
effects of current policies. In addition, the study’s 
scope is limited to two provinces, and future 
research could benefit from a broader dataset 
encompassing more regions within Yangtze 
River Delta to enhance the generalizability of the 
findings. Therefore, future research could explore 
these limitations by examining the effects of 
specific regional policies on agricultural efficiency 
over a longer period, potentially through the 
integration of other econometric or spatial 
analysis models. Additionally, investigating the 
role of digital agriculture and precision farming in 
enhancing efficiency could be beneficial, 
particularly in regions like Anhui, where there is 
significant room for growth. As technological 
advancements continue to reshape agriculture, 
further research on their impact in different 
economic contexts could provide more targeted 
recommendations for policy and resource 
allocation across varying levels of economic 
development. 
 

5.2 Related Suggestions 
 
(1) Optimizing Resource Allocation and 

Reducing Waste: The second-stage SFA 
regression reveals varying degrees of input 
redundancy in Jiangsu and Anhui, indicating 
inefficient resource allocation. Improving 
agricultural production efficiency does not 
solely rely on increasing inputs; rather, 
enhancing resource use efficiency is critical. 
By optimizing the allocation of land, labor, 
and capital, both provinces can achieve 
higher outputs with reduced inputs, thereby 
improving overall agricultural production 
efficiency. 
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(2) Promoting Land Transfer and Agricultural 
Scale Efficiency: The third-stage DEA 
analysis shows a decline in scale efficiency 
for the majority of cities in Jiangsu and Anhui 
after accounting for external factors, 
suggesting significant room for improvement 
in scale efficiency. Promoting rational land 
transfer to facilitate large-scale agricultural 
operations can improve scale efficiency, 
enabling more efficient production systems 
and better utilization of resources. 

(3) Increasing Technological Investment and 
Advancing Both Technological Progress and 
Technical Efficiency: The Malmquist Index 
analysis highlights fluctuations in both 
technological progress and technical 
efficiency in Jiangsu and Anhui during 
different years, with the lag in Anhui’s 
technological progress being a key factor 
behind its lower total factor productivity 
(TFP) compared to Jiangsu. To address this, 
both provinces should focus on enhancing 
technological progress and technical 
efficiency, while increasing investment in 
agricultural technology to boost productivity. 

(4) Leveraging Policy and Geographical 
Advantages: The research findings suggest 
that the implementation of the Yangtze River 
Delta Regional Integration Development Plan 
has driven improvements in agricultural 
production efficiency in the region. Under the 
framework of Yangtze River Delta 
integration, Jiangsu and Anhui should fully 
leverage their geographical advantages and 
regional policy support. By integrating 
regional resources, adjusting the agricultural 
industrial structure, and attracting skilled 
labor, both provinces can foster further 
improvements in agricultural production 
efficiency. 

 

6. CONCLUSION 
 
It is concluded that optimizing resource 
allocation, promoting agricultural scale efficiency, 
investing in technological advancement, and 
capitalizing on policy and geographical 
advantages are all essential strategies for 
enhancing agricultural production efficiency in 
Jiangsu and Anhui. 
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