
_____________________________________________________________________________________________________ 
 
++ Assistant Professor; 
# Ph.D. Scholar; 
† SRF NiCRA Project; 
‡ Associate Professor; 
^ Assistant Professor and H.O.D; 
## M.Sc. (Ag.); 
*Corresponding author: Email: chanyalpc.geogkuntl@gmail.com; 
 
Cite as: Patange, Mamta J, G J Abhishek, Ashwini T R, Tanu Shree Lakra, Lalta Prasad Verma, Anjali Dutt, Magendra Pal 
Singh, Kajal Kushwaha, and P C Chanyal. 2024. “Applications of Hyperspectral Remote Sensing, GIS, and Artificial Intelligence 
in Agriculture”. Archives of Current Research International 24 (7):1-13. https://doi.org/10.9734/acri/2024/v24i7823. 
 

 
 

Archives of Current Research International 
 
Volume 24, Issue 7, Page 1-13, 2024; Article no.ACRI.121811 
ISSN: 2454-7077 

 
 

 

 

Applications of Hyperspectral Remote 
Sensing, GIS, and Artificial Intelligence 

in Agriculture 

 
Mamta J Patange a++, G J Abhishek b, Ashwini T R c++,  

Tanu Shree Lakra d#, Lalta Prasad Verma e†, Anjali Dutt f‡, 
Magendra Pal Singh g^, Kajal Kushwaha h##  

and P C Chanyal h##* 

 
a Department of Agronomy, VNMKV, Parbhani (MS), India. 

b Division of Plant Genetic Resources, IARI, India. 
c Department of Agronomy, VAIAL School, Vellore Institute of Technology, Vellore,  

Tamil Nadu, - 632014, India. 
d Department of Silviculture and Agroforestry, Birsa Agricultural University, Ranchi, Jharkhand, India. 

e Department of Soil Science and Agricultural Chemistry, KVK, Sitamarhi, India.  
f Department of Botany, MMH College, Ghaziabad, Uttar Pradesh-201001, India. 

g Department of Botany, Government Degree College Hasanpur Amroha, 244241, (Mahatma Jyotiba 
Phule Rohilkhand University Bareilly Uttar Pradesh), India. 

h Department of Genetics and Plant Breeding (Mahatma Gandhi Chitrakoot Gramodaya University 
Chitrakoot Satna), India. 

 

Authors’ contributions 
 

This work was carried out in collaboration among all authors. All authors read and approved the final 
manuscript. 

 

Article Information 
 

DOI: https://doi.org/10.9734/acri/2024/v24i7823  
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer 

review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/121811  

 
 
 

https://doi.org/10.9734/acri/2024/v24i7823
https://www.sdiarticle5.com/review-history/121811


 
 
 
 

Patange et al.; Arch. Curr. Res. Int., vol. 24, no. 7, pp. 1-13, 2024; Article no.ACRI.121811 
 
 

 
2 
 

Received: 11/06/2024 
Accepted: 13/08/2024 
Published: 17/08/2024 

 
 
ABSTRACT 
 

There is a global need for a new approach that can help in solving the problems of food and water 
shortage, which are significantly affected by population growth and climatic changes. The 
conventional methods that are used for evaluating and mentoring different agricultural activities and 
processes have several challenges. These methods are laborious, destructive, time-consuming, 
and cost-consuming. Therefore, an integration of different approaches, such as hyperspectral 
remote sensing (HRS), Geographic Information Systems (GIS), and artificial intelligence (AI) has 
been found to be a very effective tool for enhancing agricultural productivity as well as 
sustainability. The main objective of this review is to demonstrate the very advanced applications 
and achievements of these techniques in the field of agricultural activities, as well as their 
potentialities in precision agriculture (PA). The HRS sensors acquire detailed spectral data, which 
can be used in several applications, such as crop monitoring and evaluating soil fertility, as well as 
providing valuable outputs to help in natural resource management. On the other hand, the GIS 
technique manages the spatial information, is combined with the attributes of the vegetation cover, 
water bodies, bare soils, etc., and applies statistical and mathematical spatial models for mapping 
and modeling purposes in order to enable better decision-making for all agricultural practices. 
Additionally, AI tools, including machine learning (ML) as well as deep learning (DL), are used for 
the spatial, spectral, wet chemistry, environmental, and field data processing and modeling to find 
the best model that can be automatically utilized in management solutions. Furthermore, the article 
demonstrates the limitations, challenges, and future directions of these approaches. Moreover, 
emphasizing the critical need for interdisciplinary contribution between the researchers, 
government, and farmers can optimize agricultural outcomes and address environmental concerns. 
Therefore, an integration of these approaches is considered as a very effective tool for detecting, 
characterizing, estimating, and mapping several objects using the mapping tools in the 
environments of different spatial analysis techniques and software. However, utilizing and 
privileging these techniques provide crucial and essential benefits in order to achieve better 
environmental resources management and agricultural sustainability.  
 

 
Keywords: Agriculture; artificial intelligence; GIS, hyperspectral; remote sensing; machine learning. 
 

1. INTRODUCTION 
 

The agricultural landscape of the globe faces 
many challenges which threaten food security, 
especially with dramatic population growth, 
climatic changes, and water shortage. By 2050, 
the world population is expected to reach about 
10 billion; and the food demand will rise by 70 to 
90 percent. Therefore, an urgent need to 
increase agricultural productivity is required to fill 
this expected gap [1]. On the other hand, there 
are several factors that cause these problems, 
such as land degradation, contentious climate 
change, and depletion of freshwater resources 
depletion. Moreover, Climatic changes affect 
weather patterns, which lead to severe drought 
conditions, frequent floods, and other factors that 
disrupt agricultural production as well as other 
supply chains. For the same purpose, the United 
Nations reported that about 925 million 

population are affected by the climatic changes 
and very vulnerable livelihoods because of the 
effects on their income as a result of agriculture 
depletion [2].   
 
Water shortage and scarcity are considered as a 
very critical problem the agriculture sector faces. 
Approximately 70 percent of the globe's 
consumption of agricultural activities depends 
only on freshwater. Another parentage is under 
the demand of urbanization, industrial demands, 
and climate change mitigation [3]. Moreover, 
multiple regions are suffering from the absence 
of freshwater, which directly affects the crop 
yields and food productivity potentialities. 
Additionally, over-consumption of groundwater 
and contamination of its resources need further 
greater efforts to secure sustainable water 
resources for irrigation purposes. Thus, the 
farmers face these challenges and require better 
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water management practices to achieve better 
agricultural productivity [4]. 
 
The integration between food security and 
socioeconomic roles can be enhanced to 
decrease the poverty ratios released to food 
access. Millions of populations suffer from 
poverty and unavailability of nutritious food. 
Furthermore, other factors can affect the food 
security issue, such as political instability that 
disrupts agricultural activities as well as migrates 
the populations searching for aid and to increase 
their humanitarian need. The pandemic of 
COVID-19 affected the food systems during the 
last five years as well as exposing vulnerabilities 
through the supply chains and worthing available 
resources [5].  
 
Therefore, there is a critical need for advanced 
approaches, including sustainable practices, to 
help in agricultural resilience. These techniques 
must be invested for the climatic changes using 
smart systems in order to improve the water 
resources and enhance land sustainability. 
Furthermore, the collaboration of government, 
non-government organizations, and the private 
sector is mandatory for developing strategies for 
improving the sectors of food security and 
ensuring sufficient and nutritional food.  
 
Hyperspectral remote sensing (HRS) is a 
potential tool for detecting, characterizing and 
estimating the different agricultural practices. The 
HRS provides continuous narrow spectral 
wavelengths within the region of visible-near-
infrared and mid-infrared (vis-NIR-MIR) and 
allows detailed spectral information to be used 
for different purposes. The applications of the 
HRS are such as crop health monitoring, soil 
fertility assessment, irrigation and fertilization 
requirements estimation, etc. Compared to 
multispectral remote sensing (MRS), which 
provides a limited number of spectral broad 
bands, HRS uses imaging sensors capable of 
detecting many agricultural factors [6]. Moreover, 
the HRS is able to characterize several kinds of 
crop stresses (biotic and abiotic), such as plant 
diseases and pests, as well as nutrient deficiency 
symptoms, which can negatively affect crop 
yields. Many studies demonstrated the HRS 
potentiality in evaluating the content of the 
chlorophyll, the levels of nitrogen, and the 
drought stress. These techniques are used for 
real-time detection and characterization 
compared to the conventional methods [7].  
 

The geographic information systems (GIS) play a 
very vital role in the agricultural sector, with the 
collaboration of the HRS using the spatial 
information and visualizing the data. Moreover, 
the GIS offers integration with different sources 
of information, such as maps of soils, weather 
data, and crop and vegetation data, which can be 
utilized for a full understanding of agricultural 
landscapes [8]. An integration of the GIS and 
HRS help the farmers for spatial identification of 
several activities of the precision agriculture (PA) 
in a specific field condition. Moreover, this 
integration provides the possibility of effectively 
managing the vegetation cover, including 
irrigation, fertilization, and pesticide applications 
when only needed in order to reduce waste as 
well as environmental impact [9]. 
 
Artificial intelligence (AI) has been found to be 
very crucial to be integrated with the HRS and 
GIS tools for improving the automated analysis of 
the different kinds of data, and enhancing the 
processes of decision-making. The AI codes 
such as machine learning (ML) as well as deep 
learning (DL) able to process huge amount of the 
hyperspectral information, recognizing the 
different patterns and correlations which is very 
tedious to be done by human. The AI and HRS 
provide a possibility for developing different 
prediction models for estimating and forecasting 
crop performance as well as early detection of 
stress symptoms, which can be used for 
achieving optimal management practices. For 
example, AI tools can be used in analyzing the 
HRS images in order to detect the specific 
locations in a single field that require irrigation, 
fertilization, etc., to help farmers take suitable 
action [10].   
 
Although these advanced techniques are used 
for different applications, there are several 
limitations and challenges, such as the 
complexity of the hyperspectral information, 
whereas advanced analyses and experience are 
required. This challenge is faced by the farmers 
who are not capable to deal with this technology. 
Moreover, integration of HRS, GIS, and AI needs 
multidisciplinary experience, including agronomy, 
data technician, soil scientist, and RS specialists, 
to be capable of developing better solutions for 
agricultural problems. Besides these challenges, 
the implementation cost is high for the local 
farmers, highlight the need for flexible solutions 
that are suitable for all agricultural stakeholders 
in the near future. 
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Thus, the objectives of this review article are to 
demonstrate the potentiality of integrating HRS, 
GIS, and AI in agriculture, discuss the different 
applications of using such advanced techniques, 
and overview the challenges and future 
directions of these technologies.  
 

2. HYPERSPECTRAL REMOTE SENSING 
(HRS)  

 

The HRS is a combination of imaging and 
spectroscopic approaches. It is a technique that 
combines imaging and spectroscopy and is used 
to acquire hyper-bands (narrow continuous 
spectral bands) that include a lot of information. 
The hyperspectral information can be utilized to 
provide complete or detailed characterization of 
several physical and chemical characteristics of 
different features. 
 

The HRS has many applications in agriculture, 
such as crop monitoring, crop health 
management, precision agriculture, crop type 
identification and mapping, soil parameters 
mapping, soil fertility evaluation, and pest and 
disease detection. These applications are briefly 

discussed below. Fig. (1) illustrates the 
applications of using the HRS, GIS, and AI.  
 

2.1 Crop Monitoring and Health 
Assessment 

 

The HRS-acquired information can be utilized for 
monitoring crop health and development and 
early detection of symptoms of pests, diseases, 
and nutrients deficiency. This application could 
be achieved by collecting, processing, analyzing, 
and modelling the spectral signatures of healthy 
and infected plants in order to prevent stress 
factors and increase crop yields [11]. 
 

2.2 Nutrient Deficiencies and Nitrogen 
Level 

 

As studied by Fu et al. [12], the HRS collected 
data are utilized as a rapid, cheap, non-
destructive, and non-laborious technique for 
evaluating the content of the leaf nitrogen as an 
essential indicator for evaluating crop health. By 
quantifying the nitrogen status, optimizing the 
application of nitrogen fertilizers can be managed 
in order to decrease chemical consumption as 
well as environmental pollution. 

 

 
 

Fig. 1. The applications of RS, GIS, and AI in agricultural activities 
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2.3 Water Stress Detection 
 

The water, either in soil or in a plant, has a very 
specific and distinguished spectral characteristic. 
Water spectral bands have a very strong 
vibration in the wavelengths of 1400, 1900, and 
2200 nm, where the water quantity can be 
estimated using the suitable ML model. This 
spectral behavior can be visual interpreted using 
the hyperspectral curve of the soil or plant 
spectral signature [13].  
 

2.4 Disease and Pest Detection 
 

The HRS using imaging technique such as 
unmanned aerial vehicle (UAV) or areophane 
which combined with a hyperspectral camera 
(sensor) can capture detailed information of 
healthy and infected plants [14]. Hyperspectral 
peak shifts are correlated with diseases or 
colorimetric symptoms caused by insects or 
other pests. By using these hyperspectral 
images, early detection can be delivered to the 
farmers to take suitable action with the required 
quantity of pesticides application. Mapping the 
healthy and infected plants in different 
geographical scales is crucial for better crop 
monitoring and management [15].  
 

2.5 Precision Agriculture (PA) 
 

As previously discussed regarding the role of 
HRS and imaging spectroscopy for detecting, 
characterizing the water, nutrients and biotic 
stresses; the agricultural inputs which required 
for the growing crops can be estimated. By using 
the hyperspectral imaging or ground-sensors 
acquired data, the detailed quantities of irrigation 
water, fertilizers, and pesticides can be provided 
through the data analysis and the AI modelling 
[16]. 

 
2.6 Yield Prediction and Quality 

Assessment 
 

Another application of the hyperspectral collected 
is quantitative and qualitative estimation of crop 
yield and its parameters such as total sugar, 
acidity, protein contents, etc. These outputs can 
be utilized for predicting the harvested crop’s 
time and quality as well as the marketing 
schedule. Hyperspectral sensors such as UAVs 
became popularly applied for precision 
agriculture. Therefore, integrating HRS and 
advanced data analysis techniques is capable of 
improving the possibility of comprehensive crop 
monitoring as well as yield estimating [17].  

2.7 Soil property estimation and mapping 
 

For soil properties estimation and prediction, a 
soil sampling task is required, whereas soil 
samples and their corresponding geo-
coordinates are collected. The samples are 
analyzed for their physical, chemical, 
mineralogical, fertility, and biological properties, 
which this task is called wet chemistry analysis. 
When the objective is mapping the various soil 
properties, the hyperspectral images are 
acquired from the different satellite sensors such 
as EnMap, Hyperion, PRISMA, etc. The 
hyperspectral laboratory data must be collected 
using the analytical spectral device (ASD), which 
is called a spectroradiometer. These soil spectral 
signatures are resampled uniformly with the 
hyperspectral satellite image’s spectral range. 
Afterward, the soil attributes (wet chemistry data) 
are integrated with the hyperspectral laboratory 
data to develop prediction models using different 
algorithms [18]. These algorithms are such as 
multivariate regression models. support vector 
regression ‘SVR,’ multiple adaptive regression 
splines ‘MARS,’ partial least square regression 
‘PLSR’; or such as machine learning algorithms 
(i.e., Artificial neural networks ‘ANN,’ 
Conventional neural networks ‘CNNs,’ random 
forests ‘RF,’ etc.). After developing the prediction 
models, the better predictor is chosen because of 
its accuracy using some statistical parameters 
such as root mean squares error (RMSE), ratio 
of performance deviation (RPD), coefficient of 
determination (R2), or other parameters. The 
model of the highest coefficient of determination 
and RPD and the lowest RMSE are selected as 
the best prediction model. This selection process 
is being done for each soil parameter 
accordingly. After that, the significant 
hyperspectral bands for each soil parameter are 
selected to be used in developing prediction 
equations. Moreover, the multiple linear 
regression model (MLR) is used to develop the 
prediction equation for mapping the soil 
properties. Mapping software such as ENVI, 
ArcGIS, QGIS, etc., is used for mapping the 
different soil parameters using hyperspectral 
images and the prediction equation. These 
outputs (maps and perdition equations or 
models) are such references for decision makers 
for achieving better soil management and land 
suitability evaluation for several crops [19].  
 

2.8 Fertilization Analysis 
 

The HRS can be utilized to determine the 
components of organic or chemical fertilizer 
components. The most important factor for 
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analyzing the different fertilizers that the spectral 
library of these fertilizers must be created which 
includes the variation of these materials. This 
spectral library contains the spectral signatures 
of a number of fertilizers samples which obtained 
in laboratory used the ASD spectroradiometer 
[20]. After developing a calibration model using 
this library, unknown samples can be entered to 
the dataset to develop a validation model. 
Afterwards, prediction equation can be generated 
for each nutrient parameter in the fertilizer such 
as (Nitrogen, potassium, phosphorus, etc.). 
 

2.9 Weather Forecasting for Agriculture 
 

For the optimal growing of the crops, suitable 
temperature, light, relative humidity, and other 
weather conditions must be available. These 
weather parameters can be forecasted using 
several weather sensors fixed on the satellites. 
These sensors are able to collect thermal data 
and other information in order to build a database 
that can be used in further processes. The main 
process is forecasting the weather conditions, 
whereas using the database, a prediction model 
can be developed. These prediction models are 
equations that include several significant spectral 
regions (electromagnetic or thermal ranges) 
related to specific weather parameters. By using 
these equations, the weather parameters can be 
estimated and forecasted. 
 

3. HYPERSPECTRAL SATELLITES  
 

There are several types of hyperspectral 
satellites, such as the Hyperion, PRISMA, 
EnMap, etc. These satellites capture the data in 
hyperspectral information in a narrow continuous 
band between 350 to 2500 nm as a spectral 
range of the vis-NIR region. Some sensors 
capture the visible spectral region from 350 to 
1100 nm. However, the final product of these 
satellites is a hyperspectral image that can be 
used to estimate different ground objects such as 
soil minerals and soil properties, assess soil 
fertility, and determine vegetation indices. An 
integration of HRS, imaging, GIS, and AI tools, 
so many applications in the agricultural field can 
be accomplished. 
 

4. AGRICULTURAL DRONES 
 

The drone is a robotic instrument which can be 
used for different purposes such as agricultural 
activities monitoring. The drone (UAV) is found in 
several types like pesticide drones, fertilizer 
drones, scanning and imaging drones, etc. 

Moreover, imaging drones are considered the 
most common type in agricultural applications. 
The drone is attached with a GPS, sensor, 
camera (in different spectral resolutions), 
antenna, controlling sensor, etc. These 
components are combined with each other in 
order to capturing an image of the agricultural 
field. However, there are many applications of 
the drones in agricultural activities. Among these 
activities is monitoring the crop health, vegetation 
cover, soil status and fertility, and the 
requirements of irrigation and fertilization for 
achieving the main objectives of precision 
agriculture. Therefore, there are some 
advantages of using these drones in agriculture, 
such as efficiency in cost, time, effort, and 
accuracy, and these techniques are eco-friendly 
and non-destructive.  
 

5. GEOGRAPHIC INFORMATION 
SYSTEMS (GIS) 

 

The GIS is a technique in which receiving, 
storing, processing, analyzing, estimating, and 
exporting different kinds of information (spatial, 
spectral, spatiotemporal, analytical, etc.) in order 
to detect, recognize, characterize, estimate, or 
predict an object or more on the earth surface in 
a rapid, cost-effective, cheap, non-destructive 
and eco-friendly approach. There are some 
components of the GIS like the information, work 
environment, and the experience of the users. 
These three components are essential for 
achieving better outputs from using the GIS in 
agriculture. However, the GIS is used for different 
applications in agricultural activities, such as 
mapping the land use and land cover (LULC) 
changes of a specific area at different times. 
These LULC units include vegetation cover, 
water bodies, soil areas, urban areas, etc. By 
classifying these LULC units, the stakeholders 
can easily make a suitable decision regarding 
their agricultural activities. Moreover, GIS is 
utilized for land suitability evaluation and 
modeling as well as land capability, productivity, 
and quality assessment. There are some 
common software for using GIS such as QGIS, 
ArcGIS, Global mapper, etc. The most common 
software is ArcGIS, which includes different 
interpolation methods for mapping the spatial 
variability and different models for predicting and 
evaluating the spatial variability of any object that 
has spatial and attributional data. These methods 
include deterministic methods (i.e. inverse 
distance weighing ‘IDW’), geostatistical methods 
(kriging ‘simple, ordinary, universal, parametric, 
etc.’), and diffusion kernels (kernel smoothing 
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and diffusions). In each method, there are 
several interpolation models that are based on 
statistical and mathematical calculations used for 
predicting different soil properties, plant health, 
and distributions. Semi-variograms are the real 
application of these spatial models, as in these 
semi-variograms, all values of the investigated 
object are distributed around the mean of this 
dataset to show the accuracy of this 
geostatistical and spatial model. The final 
product of these processes is the spatial 
variability distribution maps, which are 
considered a guide for achieving better land 
management and agricultural sustainability.  
 

5.1 Use Cases of Some GIS Applications 
in Agriculture 

 
Ibrahim et al. [21] pointed out that integrating GIS 
with the tools of the RS are potential tools to plan 
sustainable land use. Moreover, Sayed and 
Khalafalla [22] mentioned that GIS tools such as 
geostatistical analysis are crucial for the 
evaluation capability and suitability of agricultural 
land and social assessing land suitability or 
capability requires several data layers such as 
soil, climatic, social, and environmental 
parameters of specific land use. Land suitability 
evaluation (LSE) includes questions of (where, 
why and when) the crops grow [23]. To answer 
these questions, many different land suitability 
analysis methods are followed. That meant there 
was no universal or standard methodology or 
protocol for this process. The main output of the 
process of land suitability analysis is to judge the 
land (Suitable or unsuitable) for specific use. 
With this data, the possibility to answer questions 
(when and why) will be there. Using these 
outputs, land suitability mapping using different 
spatial variability distributions and geostatistical 
analysis can be used to answer the question 
(where) depending on spatial and soil attributes  
[24]..  Because big data is included in the 
evaluation, a multi-criteria evaluation (MCE) is 
used. Therefore, Geographical Information 
Systems (GIS) found to be an effective approach 
for land evaluation. It is capable of investigating 
multiple geospatial data. Moreover, the 
integration of remote sensing, GIS, and machine 
learning techniques could enhance the accuracy 
and the predictability of land evaluations’ outputs. 
Decision-makers must have sufficient knowledge 
about land evaluation techniques, and many 
factors should be included in the applied criteria. 
Not only soil attributes are used, but also climate 
data, as well as socio-economic factors, should 
be included in the criteria of land evaluation [25]. 

5.2 Soil Surveying, Sampling and 
Analysis  

 

For such projects of agricultural land evaluation, 
a huge number of soil samples should be 
collected and analyzed. In addition, a lot of effort 
is given for surveying and data collection. 
Therefore, a fast and accurate technique should 
be found to be an alternative to the conventional 
methods of soil surveying, sampling, and 
analysis. For that, GIS is a cost-effective tool that 
savings labor and analysis costs by about 75%. 
Routine methods are not able to get spatial data 
for all studied locations, but GIS is helpful for 
providing this data. GIS products such as 
mapping of soil properties as well as the land 
situation and classification of capability and 
suitability are considered as greatly assist 
decision-makers. These outputs can be easily 
shared among different teams, work groups, 
departments, organizations, and all people. The 
main importance of GIS is visualizing the outputs 
on a larger geographic scale without extra cost. 
Furthermore, the integration of soil attributes, 
spatial data, machine learning algorithms, GIS 
and remote sensing is very necessary for getting 
an accurate situation for un-surveyed locations. 
 

5.3 Soil and Crop Applications  
 

Using GIS tools depends on the spatial data and 
target attributes. GIS is used in agricultural 
studies for detecting nutrients, which can help in 
site-specific nutrient management, reduce the 
cost of fertilization as well as increase nutrient 
use efficiency [26].. By application of some useful 
models such as NDVI integrated with remotely 
sensed data, Buttar et al. [27] could map the 
healthy and non-healthy grown plants using GIS 
tools. Remote sensing and GIS tools of soil and 
crop can be an attractive alternative to the 
traditional methods of field scouting because of 
the capability of covering large areas rapidly and 
repeatedly providing spatial and temporal 
information necessary for sustainable soil and 
crop management [28].  
 

5.4 GIS mapping of Soil 
 

Producing soil maps is absolutely essential. The 
importance of maps lies in the fact that they are a 
guide for decision-makers and workers in 
agricultural lands to ensure good use of these 
lands. Soil mapping depends on a digital terrain 
model (DTM) to construct a relation between 
landform and soil. Fieldwork and laboratory 
analysis with special reference to soil constraints 
the main targets to reach land evaluation and 
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land suitability goals. Land capability and 
suitability maps are confirmed with the mapping 
units on the physiographic map for producing the 
productivity map using several automated 
models such as microLIES, ALSE, ALES, and 
others. For example, ALES is used in arid and 
semi-arid regions to estimate the agriculture land 
evaluation whereas it is linked directly to its 
relational database and coupled indirectly with a 
GIS through the loosely coupled strategy.  
 

5.5 The Land Use Land Cover (LULC) 
Classification  

 
There is a continuing demand for accurate and 
up-to-date land use/land cover information for 
any kind of sustainable development program 
where land use/land cover serves as one of the 
major input criteria. As a result, the importance of 
properly mapping land use/land cover and its 
change as well as updating it through time has 
been acknowledged by various research workers 
for decision-making activities, as for example, the 
application of a land cover change in an urban 
environment by Deng et al., [29].  

6. ARTIFICIAL INTELLIGENCE (AI) 
 

There are some functions of an AI tools for data 
analytics which can deal with the different kinds 
of information (e.g. soil, crop, moisture, minerals, 
etc.) as well as the hyperspectral signatures in 
order to create prediction models. The prediction 
models are developed through initiating 
calibration and validation datasets for each 
parameter of the investigated treatment or an 
objective. There are many AI algorithms such as 
ML and DL algorithms; for example, the ML 
models are such as random forest (RF), support 
vector machine (SVM), artificial neural network 
(ANN), etc. The multivariate regressions can also 
be used for modeling the predictability for 
different agricultural activities which such as 
partial least square regression (PLSR), support 
vector regression (SVR), and multiple adaptive 
regression splines (MARS). However, before 
apply these models, the spectral and wet 
chemistry data must be modified using several 
data transformation techniques. The illustration 
of the applied methodology is displayed in           
Fig. (2).  

 

 
 
Fig. 2. The illustration of the applied methodology of integrating RS, GIS, and AI in agricultural 

activities detection 
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Removing the outliers from the wet chemistry 
data as well as the vis-NIR datasets is 
considered as a mandatory step for achieving an 
accurate estimation of the investigated 
parameters. Moreover, these outliers can be 
spectral noises or odd values caused by 
atmospheric and gaseous effects as well as 
measuring errors during the wet chemistry 
analysis. These odd values – either higher or 
lower – the dataset values can strongly affect the 
estimation process. Furthermore, this process 
can enhance the prediction model’s accuracy 
and the parameter's predictability [30]. These 
values are removed from the dataset because 
they are unrepresentative to the spectral or wet 
chemistry database. However, the Box-Cox 
approach [31] is used as an algorithm of 
“invBoxCox” in RStudio [32]. The main process 
of this algorithm is applying the data 
normalization using Box-Cox transformation as 
mentioned in equation (1). The normalization 
process is used to put the values of spectra as 
well as the investigated object between 0 and 1 
values. The role of data normalization is 
removing outliers and enhancing calibration and 
validation predictions [33]. 
 

wt =  {
log(yt)              if λ = 0;

(yt
λ − 1)/λ    otherwise.

                     (1) 

 
whereas w = the value of the parameter ‘y’ after 
transformation, ‘t’ is the excluded values, and λ is 
the selected values. 
 
After this process, the whole dataset is divided 
into two parts: one is for the calibration dataset, 
which represents 70 percent, and another part 
for the validation dataset, which represents 30 
percent. This process of data division is used in 
different prediction models such as PLSR, RF, 
SVR, SVM, and MRS. At the same time, in the 
case of ANN, 70 percent is kept for calibration, 
15 percent for testing, and 15 percent for 
validation of the prediction model. Here are two 
examples of the prediction models (PLSR and 
RF) will be discussed as follows. 
 
The PLSR algorithm in the RStudio environment 
can be used for a semi-quantitative analysis of 
different agricultural parameters based on the 
vis-NIR spectral data. The spectral variables 
(wavelengths or bands ‘x’) are rotated with the 
wet chemistry data (any parameter values ‘y’) 
and decomposed using the ‘plsr’ algorithm, and 
some of these data are selected to develop the 
calibration and validation datasets and 
expressed as ‘p and q’. Moreover, some data 

residuals are named factor scores ‘t’ produce 
and eliminate noises ‘e and f’ as in equations 2. 
and 3 [34].  
 

X=Tp+E                                     (2) 
 
Y=Tq+f                                     (3) 

 

Another prediction model is the random forest 
‘RF’ algorithm, which is considered a reasonable 
tool for predicting objects based on a good 
calibration database through classifying and 
regressing different tree predictors, whereas the 
selection process of this variable is done 
randomly, as explained by Breiman [35]. The 
selected variables or vectors can continue the 
prediction process (forming a node or growing a 
tree) through the bagging process, which divides 
the data for training and validating the predictions 
to 70 and 30 percent, respectively. Moreover, 
using the ‘rf’ algorithm, it is possible to allow the 
growth of the trees to occur deepest to produce 
new training data which can be used for further 
predictions [36]. 
 

For evaluating the performance or accuracy of 
the prediction models PLSR and RF, some 
statistical parameters are used, such as root 
mean squares error (RMSE), the ratio of 
performance deviation (RPD), and coefficient of 
determination (R2) as described in equations 4, 5 
and 6. The Ypred is the predicted value, ‘Yi’ is the 
mean value, ‘Ymeas’ is the measured value, ‘n’ is 
the number of values (dataset of the investigated 
parameter), and ‘SD’ is the standard deviation: 
 

R2  = n − (
∑(Ypred−Ymeas)

2

∑(Yi−Ymeas)2 )                          (4) 

 

RMSE = √
1

nƩ(Ypred−Ymeas)
2                       (5) 

 

RPD =
SD

RMSE
                               (6) 

 

6.1 Selecting the Sensitive Spectral 
Variables  

 

The competitive adaptive reweighted sampling 
(CARS) approach selects the most related bands 
to the investigated parameters. For example, for 
estimating soil organic carbon (SOC), some 
hyperspectral bands are significantly correlated 
with the SOC. These selected spectral bands 
can be used to develop prediction equations.      
The CARS approach is based on Darwin's theory 
of ‘survival of the fittest,’ which can be                       
applied to vis-NIR data to select the                          
most sensitive variables, as described in 
equation (7): 
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Cj = |
𝐛𝐣̅

𝐒 (𝐛𝐣)
|                                     (7) 

 
The CARS includes four steps, as described by 
Jobson (2012). These steps are (i) the Monte 
Carlo approach, where 70% of the dataset is 
randomly selected to represent the calibration 
dataset; (ii) the exponential decreasing function 
(EDF) stage, less significant variables’ 
systematic elimination occurs as described in 
equation (8): 
 

ri = ae−ki                                   (8) 
 

whereas the compound a = (
P

2
)

1

(N−1) ;  k =
In (

P

2
)

N−1
; P 

= number of total variables; and N is the number 
of sampling runs; (iii) Adaptive Reweighted 
Sampling (ARS) is used to competitively 
eliminate variables after the initial EDF-based 
elimination, whereas variables having weights 
exceed a specified threshold are kept, while 
others are removed; (iv) quality                             
evaluation of the generated subsets by 
calculating their respective RMSE values, 
whereas the lowest subset in RMSE regards is 
chosen as an optimal. 
 

6.2 Multiple Linear Regression (MLR) 
Model for Developing Prediction 
Equations 

 
The general equation of MLR modelling was 
formulated as equation (9),  
 

Y =  a +  bX1  +  cX2  +  dX3  + ⋯ +  nXn   (9) 
 
whereas ‘Y’ is considered the lead dependent 
variable (soil parameter such as SOM, TP, TK, 
and CEC); X1, X2, …, Xn are independent 
variables including the selected spectral bands 
obtained from CARS. The order of independent 
variables varies depending on the regression 
analysis results [37]. 
 

6.3 An Integration of the RS and GIS for 
Mapping Agricultural Activities 

 
The spatial variability of different agricultural 
activities (soil, vegetation, water, etc.) can be 
interpolated, estimated, or predicted using the 
hyperspectral vis-NIR reflectance data as well as 
interpolation methods such as kriging 
interpolation and its entire models such as 
(ordinary kriging ‘OK’, universal kriging ‘UK’) in 
the ArcGIS software environment. The generated 

spatial variability distribution maps of these 
several agricultural activities can provide a 
comprehensive overview of the distribution of 
these parameters. Geostatistical analysis was 
performed using the ArcGIS geostatistical 
analysis tool, following the guidelines outlined by 
ESRI [38]. Initially, the analysis involved 
examining the histogram of the raw data, 
followed by selecting semi-variogram models to 
express spatial relationships. These models were 
then combined with various interpolation 
approaches. The first step in kriging interpolation 
is establishing and modeling the semi-variogram 
of the parameters. The semi-variance 
expression, as described by Kupfersberger et al. 
[39-41] in equation (10), was used for this 
purpose: 
 

γ(h) =
1

2N(h)
× ∑ [Z(xi) −  Z(xi +  h)]2N(h)

i    (10) 

 

whereas an empirical semi-variogram weight = 
γ (h); h = lag interval distance; sample pairs 
number through the lag distance = N(h); the 
sample values at xi and xi + h spatial locations = 
Z(xi) and Z (xi + h), respectively. 
 

In this research, we validated each semi-
variogram model using multiple soil property 
datasets. Additionally, we used a range of criteria 
to evaluate the effectiveness of the semi-
variogram models. These criteria included penta-
spheric, tetra-spherical, spherical, stable, J-
Bessel, K-Bessel, hole effect, rational quadratic, 
Gaussian, exponential, and circular models. The 
kriging procedure was performed by applying 
equation 11, as described by Webster and Oliver 
in their work published in 2007: 
 

Z∗(x0) = ∑ λiz(xi)
N
i=1                      (11) 

 

where Z*(x0) is an expected soil parameter's 
value at any unsampled location x0; xi are data 
points in a selected nearness; Z(xi) is the soil 
parameter's observed value at the position xi; λi 
is the weight of soil parameter's measured value 
at xi location; and N is locations number in the 
nearness detected point.  
 

The all-encompassing kriging model is an 
important modification of the ordinary kriging 
technique. It utilized semi-variograms to correct 
autocorrelation as well as measure errors, as 
mentioned by Gundogdu and Guney (2007). In 
this context, the error was described as both 
auto-correlated and random. The model selection 
was based on the deterministic function as well 
as the error value, as presented in Equation 12: 
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Z(s) = μ(s) + ε(s)                      (12) 
 

whereas Z(s) = the variable of interest, μ(s) = 
deterministic functions, and ε(s) = the error. 

 

7. CONCLUSION 
 

The integration of hyperspectral remote sensing 
(HRS), Geographic Information Systems (GIS), 
and artificial intelligence (AI) presents a 
transformative opportunity to address the 
pressing challenges of food and water scarcity 
exacerbated by population growth and climate 
change. This review highlights the significant 
advancements in these technologies and their 
applications in precision agriculture (PA), 
demonstrating their potential to enhance 
agricultural productivity and sustainability. 
 
HRS provides detailed spectral data that can be 
utilized for various applications, including crop 
monitoring and soil fertility assessment. GIS 
complements this by managing spatial 
information, allowing for effective mapping and 
modeling of agricultural practices. Furthermore, 
AI, particularly through machine learning and 
deep learning, enhances data processing and 
modeling, enabling the development of 
automated management solutions. 
 

Despite the promising capabilities of these 
integrated approaches, the review also 
addresses the limitations and challenges                 
that remain, emphasizing the need for 
interdisciplinary collaboration among 
researchers, policymakers, and agricultural 
stakeholders. Future directions should focus on 
overcoming these obstacles to fully realize the 
potential of these technologies in ensuring food 
security and sustainable resource management. 
 

In conclusion, the convergence of HRS, GIS, and 
AI offers a robust framework for tackling the 
multifaceted issues of food and water shortages. 
By fostering collaboration and innovation in these 
fields, we can pave the way for more resilient 
agricultural systems capable of meeting the 
demands of a growing global population in the 
face of environmental challenges. 
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