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Background: Polystyrene microplastics (PS-MPs) exhibit multi-target, multi-
dimensional, chronic, and low toxicity to the cardiovascular system. They
enter the bloodstream through the gastrointestinal tract and respiratory
system, altering blood parameters and conditions, inducing thrombotic
diseases, and damaging myocardial tissue through the promotion of oxidative
stress and inflammatory responses in myocardial cells. However, many of the
links and mechanisms remain unclear.

Methods: In this study, 48 wistar rats were randomly divided into four groups and
exposed to different concentrations of PS-MPs: control group (0 mg/kg/d), low
dose group (0.5 mg/kg/d), middle dose group (5 mg/kg/d) and high dose group
(50 mg/kg/d), with 12 rats in each group. After 90 consecutive days of intragastric
administration of PS-MPs, biochemical markers in myocardium, aorta and blood
were detected, and HE staining was performed to observe the toxic effects of PS-
mps on cardiovascular system. Furthermore, non-targeted metabolomics
methods were used to analyze the effect of PS-MPs exposure on the
metabolism of cardiovascular system in rats, and to explore its potential
molecular mechanism.

Results: The results revealed no pathological changes in the heart and aorta
following PS-MPs exposure. However, the myocardial enzyme levels in the high
dose PS-MPs group of rats showed a significant increase. Moreover, exposure to
polystyrene microplastics caused a disorder in lipid metabolism in rats, and led to
an increase in indicators of inflammation and oxidative stress in myocardial and
aortic tissues, but resulted in a decrease in the level of IL-6. Untargeted
metabolomics results showed that metabolites with antioxidant and anti-
inflammatory effects, including equol and 4-hydroxybenzoic acid, were
significantly upregulated.

Conclusion: These results suggest that long-term exposure to high
concentrations of PS-MPs may lead to abnormal lipid metabolism and
cardiovascular system damage. The mechanism may be related to oxidative
stress and inflammatory response. Exogenous antioxidants and changes in
own metabolites may have a protective effect on the injury. Therefore,
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understanding the toxicological mechanism of PS-MPs not only helps to elucidate
its pathogenesis, but also provides new ideas for the treatment of chronic diseases.
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inflammatory response, oxidative stress

1 Introduction

Plastics are widely used because of their simple, durable and
plastic characteristics. However, with the increase of the
consumption, non-degradation, waste management and other
problems make it become one of the major environmental
threats. Plastic pollution is not only a prominent threat to the
environment, but studies have found that smaller pieces of plastic
broken down by ultraviolet light can enter organisms and threaten
human health (Conti et al., 2021). Among them, plastic fragments,
fibers or particles with a diameter less than 5 mm are called
microplastics, which widely exist in the ocean, soil and other
environmental media, and can also release certain harmful gases
through their own oxidative decomposition, causing air pollution
(Klein and Fischer, 2019; Herrera et al., 2022). According to the
results of a survey conducted in 2019 in the United States of America
(Cox et al., 2019), the average annual intake of microplastics per
person through diet is estimated to be 39,000 to 52,000 particles,
which increases to an estimated 74,000 and 121,000 particles per
year when inhalation is also taken into account. Different polymer
types of microplastics includes polyethylene, polypropylene,
polystyrene, polyamide, nylon, and rayon, etc (Shruti et al., 2021).

Polystyrene microplastics (PS-MPs) are widely used in
construction products, plastic packaging, personal care products
and food containers (such as toothpaste, cosmetics and cups) due to
their high transparency, wear resistance and easy dyeing (Schwabl
et al., 2019). In the environment, PS-MPs is widely found in
atmospheric, water, soil and other environmental media, and
which can penetrate the food web through aquatic organisms,
animals and humans (Nanda et al., 2022).

Medical studies have found that PS-MPs can be absorbed by
organisms and accumulate in the body, and affect human health
through the food chain. Microplastics, especially nanoplastics with
smaller diameters, can enter the lungs through the respiratory tract.
Gastrointestinal absorption is another way that microplastics affect
human health. Through gastrointestinal uptake, microplastics can
enter blood, and distribute to liver, muscle, brain and heart (Yong
et al., 2020). In vitro and in vivo studies in animals have shown that
potential inhalation or ingestion of microplastics can cause a variety
of biological effects, including physical (particle) toxicity, triggering
oxidative stress, cytokine secretion, cell damage, inflammatory and
immune responses, as well as DNA damage, neurotoxicity and lipid
metabolic effects (Deng et al., 2017; Schirinzi et al., 2017; Deng et al.,
2018; Lim et al., 2019; Vethaak and Legler, 2021).

The cardiovascular system, respiratory system, and digestive
system share similar attributes and serve as both carriers for the
migration of microplastics within the body and targets of
microplastic damage. Therefore, the impact of microplastics on
the cardiovascular system has gained extensive attention. Most of
the previous studies focused on Marine organisms and mammals.

Starting from the detection of microplastic fragments in fish gills
(Koongolla et al., 2020), it has been confirmed that microplastics not
only enter the bloodstream and alter blood parameters and
conditions but also induce thrombotic diseases. They can also act
on myocardial tissue, leading to myocardial damage through the
promotion of oxidative stress and inflammatory reactions in
myocardial cells. Yue et al. applied 5 μm PS-MPs of different
concentrations to chicken hearts and primary cardiomyocytes
and found severe pathological damage and ultrastructural
changes in the heart, as well as myocardial hypothermia,
inflammatory cell infiltrations, and mitochondrial damage (Zhang
et al., 2022). PS-MPs caused abnormal levels of antioxidant enzymes
and excessive production of reactive oxygen species, resulting in
changes in the NF-κB-NLRP3-GSDMD and AMPK-PGC-1α
pathways, leading to oxidative stress, myocardial hypothermia,
inflammation, mitochondrial dysfunction, and energy metabolism
disorders (Zhang et al., 2022). Additionally, Li et al. confirmed in a
rat model that exposure to PS-MPs leads to structural damage and
apoptosis of myocardial cells, as well as collagen proliferation in the
heart. The mechanisms may involve PS-MPs activating the Wnt/β-
catenin pathway and triggering oxidative stress-induced myocardial
cell apoptosis, ultimately inducing myocardial fibrosis and causing
cardiovascular toxicity (Li et al., 2020). A recently published clinical
observational study found that microplastics and nano-
microplastics are present in human carotid plaques, and patients
with microplastics and polystyrene microplastics detected within
atherosclerotic plaques had a significantly higher risk of primary
endpoint events such as myocardial infarction and stroke than
patients without these substances detected (Marfella et al., 2024).
Based on the current literature, PS-MPs has low toxic damage to the
cardiovascular system, and it is a multi-target, multi-dimensional
and chronic effect. Oxidative stress and inflammation may be the
main toxicological mechanism. However, many links and
mechanisms need to be further explored and clarified.

It has been discovered that there is a close correlation between
the metabolites produced during the process of metabolism and the
occurrence of diseases. Metabolites, as direct indicators of
biochemical activity, are more easily related to phenotypes. They
serve as substrates and products for driving basic cellular functions
such as energy production and storage, signal transduction, and cell
apoptosis. In addition to being directly produced by the body,
metabolites can also be obtained from microorganisms, diet, and
other external sources (Johnson et al., 2012). Metabolomics, as a
powerful method, has been widely used in scientific research and
clinical diagnosis, helping us explore and understand diseases. Non-
targeted metabolomics detection based on LC-MS can
comprehensively detect metabolites and is widely used in
evaluating the components of environmental pollution and the
mechanisms of bodily injury. In the case of microplastic-induced
bodily injury, it can not only evaluate its direct damage targets, but
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also comprehensively evaluate the molecular mechanisms of
microplastic-induced bodily injury. Microplastic-induced bodily
injury has the characteristics of chronicity and accumulation.
Long-term accumulation can cause changes in bodily metabolites,
driving cellular energy production and storage, signal transduction,
and cell apoptosis. Therefore, this study utilized a non-targeted
metabolomics approach to investigate the effects and molecular
mechanisms of PS-MPs exposure on the cardiovascular
system of rats.

2 Methods

2.1 Animal subjects and grouping

Forty-eight 6-week-old SPFWistarmale rats, weighing (180 ± 20) g,
were selected. All rats were provided by Beijing Huafukang
Biotechnology Co., LTD., and raised in the Medical Animal
Experimental Center, School of Public Health, Jilin University. After
1 week of adaptive feeding, the rats were randomly divided into four
groups according to the concentration of PS-MPs: the control (0 mg/kg/
d) group, low dose (0.5 mg/kg/d) group,middle dose (5 mg/kg/d) group
and high dose (50 mg/kg/d) group, with 12 rats in each group. The rats
were exposed by gavage once a day for 90 days. The low, middle and
high dose groups were given the corresponding concentration of 0.5 μm
PS-MPs, which was thoroughly mixed by ultrasound 30min before
exposure, and the control groupwas given the corresponding volume of
distilled water. The status of rats was observed every day, and the
changes in bodyweight, diet andwater intake of rats were recorded. The
exposed doses of PS-MPs were selected based on the cardiotoxicity
studies of PS-MPs in rats (Li et al., 2020; Wei et al., 2021).

All rats were fed in the Medical Animal Experiment Center of
the School of Public Health, Jilin University. This study was
approved by the Ethics Committee of School of Public Health,
Jilin University (No.: 2022-07-08).

2.2 Tissue sample collection

Twenty-four hours after the last exposure, the rats were fasted for
12 h. After anesthesia, blood samples were collected from the heart, and
then the heart and thoracoabdominal aortic tissue were carefully
dissected out. The blood samples were left at 4 °C for 1 h and then
centrifuged at 3500rpm for 15 min to obtain the upper layer for the
detection of blood parameters and non-targeted metabolomics tests.
After the organ tissues were thoroughly cleaned with normal saline, the
surface moisture was blotted with clean filter paper and weighed. A
portion of the tissue was fixed in 4% paraformaldehyde for HE staining
of pathological sections. The remaining tissue was immediately placed
into cryopreserved tubes and placed in liquid nitrogen, and 24 h later
transferred to −80 °C refrigerator for storage.

2.3 Detection of myocardial tissue and
serum parameters

Cardiac troponin T (cTNT), creatine phosphokinase isoenzyme
(CK-MB), lactate dehydrogenase (LDH), interleukin-1 (IL-1),

interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-
1), superoxide dismutase (SOD), glutathione peroxidase (GSH),
tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18) and
interleukin-6 (IL-6) in myocardial tissue were detected by ELISA.
Serum triglyceride (TG), total cholesterol (TC), low density
lipoprotein (LDL), high density lipoprotein (HDL) and glucose
(GLU) levels were detected with commercial kits (Nanjing
Jiancheng Bioengineering Institute, China). Serum
malondialdehyde (MDA), GSH, IL-1, TNF-α, SOD and acid
phosphatase (ACP) activity were detected by ELISA. These
experimental index kits were purchased from the Nanjing
Jiancheng Institute of Biotechnology (Nanjing, China). All
experiments were performed strictly according to the
manufacturer’s instructions.

2.4 Histopathological analysis

The tissues of all groups were also fixed in 4%
paraformaldehyde, embedded in paraffin wax, sectioned at 4 μm
thickness, and stained with hematoxylin and eosin (H&E) for
microscopic observation.

2.5 Non-targeted metabolomics

2.5.1 Sample preparation/metabolite extraction
Melt all samples at 4 °C. Take 100 μL from each sample in a 2 mL

microcentrifuge tube (for samples ≤50μL, the experimental system is
halved for extraction, while the residual system remains unchanged).
Add 400 μL of pre-cooled methanol (−20 °C) to each
microcentrifuge tube, shake for 60 s. Centrifuge at 12,000 rpm at
4 °C for 10 min. Take the total supernatant and transfer it to a new
2 mL centrifuge tube. Concentrate and dry it in vacuo. Dissolve
150 μL of 2-chlorophenylalanine (4 ppm) in 80% methanol solution
and filter the supernatant using a 0.22 μm membrane to obtain the
sample to be measured. Take 20 μL from each sample to be
measured and mix it into a QC sample (QC: quality control,
used to correct the deviation of the analysis results of mixed
samples and errors caused by the analytical instrument itself).
Perform LC-MS testing with the remaining sample to be
measured. The datasets presented in the study can be found in
Metabolights database (accession number: MTBLS9366, URL: www.
ebi.ac.uk/metabolights/MTBLS9366).

2.5.2 LC-MS detection
Chromatographic conditions: ① Instrument: U3000, Thermo.

② Column: ACQUITY UPLC® HSS T3 1.8 µm (2.1 × 150 mm)
chromatographic column. ③ Chromatographic separation
conditions: column temperature 40 °C; flow rate 0.25 mL/min;
mobile phase as follows: positive ion 0.1% formic acid water (C)-
0.1% formic acid acetonitrile (D); negative ion 5 mM ammonium
formate water (A)-acetonitrile (B); injection volume 2 μL; auto
sampler temperature 8 °C. ④The gradient elution program of the
mobile phase is as follows: 0-1 min, 2% B/D; 1-9 min, 2%–50% B/D;
9-12 min, 50%–98% B/D; 12-13.5 min, 98% B/D; 13.5-14 min, 98%–
2% B/D; 14-20 min, 2% D in positive mode (14-17 min, 2% B in
negative mode).
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Mass Spectrometry Conditions: ①Instrument: Q Exactive HF-
X, Thermo; ②Mass Spectrometry Conditions: Electrospray
ionization source (ESI), positive and negative ionization modes,
positive ion spray voltage of 3.50 kV, negative ion spray voltage of
2.50 kV, sheath gas 30 arb, auxiliary gas 10 arb. Capillary
temperature 325°C, with a resolution of 60,000 for full scan,
scanning range 81–1,000, and using HCD for second-stage
fragmentation, collision voltage of 30 eV, while employing
dynamic exclusion to remove unnecessary MS/MS information.

2.6 Data processing

The original data were converted into mzXML format (XCMS
input file format) by Proteowizard software (V3.0.8789). Peaks
identification, peak filtration and peak alignment were performed
using the XCMS package of R (V3.3.2). The main parameters were
BW = 2, PPM = 15, Peakwidth = C (5, 30), mZWId = 0.015,
MZDIff = 0.01, Method = centWave. The data matrix including
mass to charge ratio (m/z), retention time (rt) and intensity was
obtained. In positive ion mode, 13,628 precursor molecules were
obtained. A total of 14,889 precursor molecules were obtained in
negative ion mode, and the data were exported to Excel for
subsequent analysis. Batch normalization of peak areas was used
to allow comparison of data of different magnitudes.

First, the Base peak chromatogram (BPC) was obtained. QC
samples were inserted into the test samples before, during and
after injection to obtain the data information of QC samples. The
stability of the system during the whole experiment was
controlled and the correlation analysis of samples was
performed to obtain the PCA analysis chart. On the basis of
quality control (QC), quality assurance (QA) was further
performed to delete the features with poor repeatability in QC
samples and obtain a higher quality dataset. In QC samples, RSD
(relative standard deviation) and LT; The proportion of
characteristic peaks of 30% can reach about 70%, indicating
that the data are good. The metabolites were further analyzed
by principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), and orthogonal partial least
multiplication-discriminant analysis (OPLS-DA).

By screening the metabolites, differential metabolites
(biomarkers) were found. The screening criteria for relevant
differential metabolites were: 1) p-value ≤0.05 and VIP ≥1; 2)
p-value ≤0.05 and fold change ≥1.5 or ≤0.667; 3) one-way
ANOVA p-value ≤0.05; 4) two-way ANOVA p-value ≤0.05.
The identification of metabolites begins with the confirmation
of the exact molecular weight of the metabolite (molecular weight
error <30 ppm), according to MS/MS pattern after the pieces of
information in HumanMetabolome Database (HMDB) (http://
www.hmdb.ca), Metlin (http://metlin.scripps.edu), Massbank
(http://www.massbank.Jp/), LipidMaps (http://www.lipidmaps.
org), mZclound (https://www.mzcloud.org), And further
matching annotations in the self-established standard database
to obtain accurate metabolite information. The results of
screening differential metabolites were further visualized in
the form of volcano plot, and differential metabolite z-score
analysis, differential metabolite hierarchical clustering analysis
(HeatMAP), and differential metabolite association analysis were

performed. KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway analysis was used to analyze the pathways of differential
metabolites.

2.7 Statistical analysis

All the continuous variables in myocardial tissue and blood
indicators were expressed as mean ± standard deviation (�x ± SD)
and compared with the use of analysis of variance, with the use of
the LSD test for further pairwise comparisons. Multiple testing
was performed. Non-normally distributed variables in
myocardial tissue and blood indicators were expressed as M
(Q25, Q75), and the rank sum test was used between groups. p
values <0.05 in double-tailed were considered to be statistically
significant between the two groups. The error diagram of
biomarker intensity and the above statistical analysis were
implemented by IBM SPSS 24.0.

3 Results

3.1 Effects of PS-MPs exposure on
myocardial tissue in rats

3.1.1 Myocardial HE staining
In the control group, the cytoplasm of cardiomyocytes was red

stained, the intercellular connection was tight, and there was no
myocardial interstitial edema or abnormal inflammatory reaction in
themyocardial interstitium. Compared with the control group, there
was no significant difference in the morphology of cardiomyocytes
in each treatment group, as shown in Figure 1.

3.1.2 Changes of myocardial tissue damage and
inflammatorymarkers in rats after PS-MPs exposure

As shown in Figure 2, the levels of cTnT in myocardial tissue
homogenates of rats in each exposure group demonstrated an
increasing trend, but no significant difference was observed
between the exposure groups and the control group (p > 0.05).
The level of CK-MB was significantly higher in the 50 mg/kg/d
group compared to the other groups (p < 0.05). There were no
significant differences in LDH levels in myocardial tissue homogenate
between the exposed groups and the control group (p > 0.05). The
levels of IL-1, IL-1β, and ICAM-1 in myocardial tissue increased with
increasing doses of PS-MPs. The levels of IL-1, IL-1β, and ICAM-1 in
the 50 mg/kg/d PS-MPs group were significantly higher than those in
the control group (p < 0.05). In contrast, the level of IL-6 in the hearts
of rats showed a downward trend. IL-6 in the 50 mg/kg/d group was
significantly lower than that of the control group (p < 0.05). With
increasing doses of PS-MPs, the levels of myocardial IL-18 and TNF-α
initially decreased and then increased. Notably, the levels of
myocardial IL-18 and TNF-α in the 5 mg/kg/d PS-MPs group
were significantly lower than those in the control group (p < 0.05).
Additionally, the level of TNF-α in the 50 mg/kg/d group was
significantly higher than that in the 5 mg/kg/d group (p < 0.05). In
addition, the levels of SOD in the exposure group showed a downward
trend. The level of SOD in the 50 mg/kg/d group was significantly
lower than that in the other groups (p < 0.05). The level of GSH in the
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group receiving 0.5 mg/kg/d was significantly higher than in the
control group (p < 0.05). The GSH level in the group receiving
5 mg/kg/d was significantly higher than that in the control group but
significantly lower than in the 0.5 mg/kg/d group (p < 0.05).
Furthermore, the GSH level in the group receiving 50 mg/kg/d was
significantly lower than in the 0.5 mg/kg/d group (p < 0.05).

3.2 Effects of PS-MPs exposure on aorta and
serum parameters in rats

3.2.1 HE staining of aorta
The distribution of aortic endothelial cells in the control group is

continuous, without any abnormal swelling or loss of endothelial

FIGURE 1
Pathological changes of heart in rats exposed to PS-MPs. (A) 0 mg/kg/d group, (B) 0.5 mg/kg/d group, (C) 5 mg/kg/d group, (D) 50 mg/kg/d group.

FIGURE 2
Effects of PS-MPs exposure on inflammatory markers in rat myocardial tissue. a p < 0.05, Comparison with 0 mg/kg/d; b p < 0.05, Comparison with
0.5 mg/kg/d; c p < 0.05, Comparison with 5 mg/kg/d.
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cells. The aortic media is composed of multiple layers of elastic
fibers, without any edema or degeneration of the elastic fibers in the
aortic media. No abnormal inflammatory response is observed in the
aortic adventitia, indicating a normal aortic morphology. Compared
to the control group, there were no morphological differences
observed in the exposed groups with different concentrations of
PS-MPs. (Figure 3).

3.2.2 Effects of PS-MPs on lipid and blood glucose
level in rats

The results demonstrated that exposure to PS-MPs had no impact on
blood glucose. However, the concentration of exposure affected the levels
of LDL, TC, and TG in blood lipids. As the PS-MPs exposure dose
increased, LDL levels exhibited an initial increase followed by a decrease.
The serum LDL level in the 50mg/kg/d group was significantly lower

FIGURE 3
Pathological changes of aorta in rats exposed to PS-MPs. (A) 0 mg/kg/d group, (B) 0.5 mg/kg/d group, (C) 5 mg/kg/d group, (D) 50 mg/kg/d group.

FIGURE 4
Effects of PS-MPs on lipid and blood glucose level in rats. *p < 0.05, Comparison with 0 mg/kg/d; **p < 0.05, Comparison with 0.5 mg/kg/d.
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than that in the 0.5 mg/kg/d group (p< 0.05). The TC level demonstrated
a rising trend, and the 5 mg/kg/d group exhibited a significantly higher
TC level compared to the control group (p < 0.05). In contrast, the TG
level in the 5mg/kg/d groupwas lower than that in the control group (p<
0.05). No significant differences were observed in the other lipid levels
and Glu level among all groups (Figure 4).

3.2.3 Effect of PS-MPs exposure on serum marker
levels in rats

The effects of exposure to different concentrations of PS-MPs on
serummarkers in ratswere additionally assessed. The serumACP activity
of the 50mg/kg/d group was higher than that of the control group (p <
0.05). Serum MDA levels of the 5 mg/kg/d group were significantly
higher than that in the control group (p< 0.05). No significant differences
were observed in other biomarkers among all groups (Figure 5).

3.3 Metabolomics changes in rats exposed
to PS-MPs

Comparisons by OPLS-DA of the metabolomic changes after
exposure to different doses of PS-MPs are shown in Figure 6. The
0.5 mg/kg/d group, 5 mg/kg/d group and 50 mg/kg/d group can all
be distinctly distinguished from the 0 mg/kg/d group. In general, the
OPLS-DA model indicated that the metabolic profiles of rats
changed after being exposed to different doses of PS-MPs.

As shown in Figure 7, a total of 231 metabolites with significant
differential expression were identified by metabolite screening (VIP >
1 and p < 0.05). 51 significantly different metabolites were found in the
0.5 mg/kg/d group comparedwith the 0 mg/kg/d group, 129 significantly
different metabolites were found in the 5 mg/kg/d group compared with
the 0 mg/kg/d group, and 101 significantly different metabolites were
found in the 50mg/kg/d group compared with the 0 mg/kg/d group.

Figure 7 Heat map of differential metabolites between rats in
different PS-MPs exposure concentration groups and the control
group. (A) 0.5 mg/kg/d group VS. 0 mg/kg/d group, (B) 5 mg/kg/d
group VS. 0 mg/kg/d group and (C) 50mg/kg/d group VS. 0 mg/kg/
d group.

The volcano diagram in Figure 8 illustrates that there were
significant changes in the expression of several metabolites when the
exposure concentration of PS-MPs increased. Equol, 4-hydroxybenzoic
acid (4-HBA), oxoadipic acid, guanidinosuccinic acid and alpha-D-
glucose were upregulated significantly. Ketoleucine, maltol, isobutyric
acid and oleamide were downregulated significantly.

3.4 Differential metabolite pathway analysis

Further analysis of the KEGG results revealed that “protein
digestion and absorption, linoleic acid metabolism, butanoate
metabolism, basal cell carcinoma” were all present in the three
groups with different concentrations of PS-MPs exposure

FIGURE 5
Effect of PS-MPs exposure on serum marker levels in rats. *p < 0.05.
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(Figure 9A). However, with the increase of PS-MPs concentration,
the metabolites involved in “ABC transporter, β-alanine
metabolism, phenylalanine, nicotinate and nicotinamide
metabolism, lysine degradation” changed. The metabolic
pathways of “nicotinate and nicotinamide” and “linoleic acid”
were more active in rats exposed to high dose PS-MPs
(50 mg/kg/d). Figure 9B shows that the metabolites quinolinic
acid, niacin and nicotinamide in the nicotinate and nicotinamide
metabolic pathways were significantly different, and the metabolite

13(S)-HPODE in the linoleic acid metabolic pathway was
significantly different.

3.5 Correlation analysis of serum parameters
and differential metabolites

There were changes in LDL, TC, TG, serum ACP activity and
MDA level after PS-MPs exposure. Therefore, the correlation

FIGURE 6
OPLS-DA diagrams for all groups. (A) Results of the analysis in negative ion mode, (B) results of the analysis in positive ion mode.

FIGURE 7
Heatmap of differential metabolites between rats in different PS-MPs exposure concentration groups and the control group. (A) 0.5 mg/kg/d group
VS. 0 mg/kg/d group, (B) 5 mg/kg/d group VS. 0 mg/kg/d group and (C) 50 mg/kg/d group VS. 0 mg/kg/d group.
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between the above indexes and differential metabolites was analyzed
in the high concentration PS-MPs exposure group (50 mg/kg/d).
Figure 10 showed a negative correlation between equol and
MDA levels.

4 Discussion

In the past 5 years, the harm of microplastic pollution to the
environment and organisms has received increasing attention.
According to a survey conducted in the United States in 2019, it
was estimated that the average annual intake of microplastics
through the diet ranges from 39,000 to 52,000 particles per
person (Cox et al., 2019). If inhalation is also taken into
consideration, these estimates would increase to 74,000 and
121,000 particles per year (Cox et al., 2019). However, given the
escalating levels of pollution and incomplete dietary data, the actual
numbers are likely to be even higher. Multiple studies have
confirmed that PS-MPs can penetrate the blood barrier and
reach various organs and tissues in the body, leading to chronic
obstructive pulmonary disease, tumors, neurological damage, liver
toxicity, kidney toxicity, reproductive toxicity, teratogenicity, ocular
toxicity, and cardiac toxicity. Both PS-MPs and nanoplastics have
been found to cause damage to cardiomyocytes in marine and
terrestrial organisms (Lett et al., 2021; Wei et al., 2021; Wu et al.,
2022; Zhou et al., 2023), and can even lead to myocardial fibrosis (Li
et al., 2020; Lin et al., 2022). However, in terrestrial organisms such
as chickens, rats, and mice, the main effect is localized and subtle
damage to the myocardium.

Based on previous research results, this study utilized three
different concentrations (0.5, 5, 50 mg/kg/d) of PS-MPs to induce
toxicity in rats and extended the period of exposure to 90 days, in
order to observe the impact of PS-MPs on the cardiovascular system
of rats. The histopathological results of this study showed no
significant pathological changes in myocardial cells and blood
vessels in rats after long-term poisoning with high concentrations
of PS-MPs. There was no notable increase in the levels of cardiac
structural protein TNT, while the levels of CK-MB in the high-dose

PS-MPs group (50 mg/kg/d) showed significant elevation. The toxic
effect of PS-MPs on myocardium is characterized by chronic and
low toxicity. Long-term high-dose accumulation may further lead to
myocardial pathological changes on the basis of cellular
functional damage.

PS-MPsmay cause pathological changes in the heart through the
induction of cardiomyocyte pyroptosis, inflammatory cell
infiltration, and mitochondrial damage (Wu et al., 2022; Zhang
et al., 2022). In this study, inflammatory markers were detected in
both myocardial tissue and serum, revealing that exposure to PS-
MPs significantly elevated the levels of IL-1, IL-1β, and ICAM-1, as
well as serumMDA level and ACP activity. Interestingly, contrary to
expectations, the expression level of IL-6 in myocardial tissue
decreased with the increment in PS-MPs concentration. However,
it was surprising that serum level of IL-6 in myocardial tissue
decreased with the increase of PS-MPs exposure concentration.
IL-6 has a wide range of physiological functions in organisms,
including host defense, regulation of immune cells, proliferation,
and differentiation. It has been found to be involved in the
pathogenesis of various chronic inflammatory diseases such as
Crohn’s disease, rheumatoid arthritis, and inflammatory bowel
cancer, and is also associated with atherosclerotic heart disease
(Schuett et al., 2012; Ridker and Rane, 2021). However, it has
been found that there are two types of IL-6 receptors in the
body, the soluble IL-6 receptor (sIL-6R) -mediated trans
signaling has a pro-inflammatory effect, and IL-6 can play an
anti-inflammatory effect through membrane-binding IL-6
receptor (classical signaling) (Rose-John, 2018). In ApoE−/−IL-6−/−

mice with double knockout, lifelong deficiency of IL-6 may enhance
the formation of atherosclerotic plaques (Schieffer et al., 2004).
Thus, in atherosclerosis, baseline IL-6 levels have regulatory effects
on lipid homeostasis, vascular remodeling, and plaque
inflammation. Further studies are needed to determine the
relationship between the decreased myocardial IL-6 level and PS-
MPs injury in the present study.

The liver is the main site for metabolism and detoxification in
the body. PS-MPs can affect liver lipid metabolism after entering the
body (Lu et al., 2018; Luo et al., 2019; He et al., 2023). PS NPs and

FIGURE 8
Volcano of differential metabolites between rats in different PS-MPs exposure concentration groups and the control group. (A) 0.5 mg/kg/d group
VS. 0 mg/kg/d group, (B) 5 mg/kg/d group VS. 0 mg/kg/d group and (C) 50 mg/kg/d group VS. 0 mg/kg/d group.
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aPS NPs not only upregulate the expression levels of
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (p-AKT)/
glucose transporter 4 (GLUT4) proteins in the glucose
metabolism pathway in mice, but also significantly increase the
expression levels of key proteins in the lipid metabolism signaling
pathway, including sterol regulatory element-binding protein-1
(SREBP-1)/peroxisome proliferator-activated receptor gamma
(PPARγ)/adipose triglyceride lipase (ATGL), thereby affecting
glucose and lipid metabolism (He et al., 2023). Another study
found that PS-MPs of different diameters mainly lead to a
decrease in TG and TC levels in mouse liver, which may be
related to changes in gut microbiota composition and induction
of hepatic lipid disorder by polystyrene MPs (Lu et al., 2018). In this
study, significant changes in blood lipid levels were observed in rats
exposed to PS-MPs at a dose of 5 mg/kg/d. Specifically, there was an
increase in TC levels and a decrease in TG levels. In the group
exposed to PS-MPs at a dose of 50 mg/kg/day, LDL levels showed a

downward trend. However, there was no significant difference in
blood glucose levels. IL-6 was identified as a lipolytic factor, as the
IL-6 knockout mice developed mature obesity, which was partially
reversed after repeated administration of IL-6 (Wallenius et al.,
2002). IL-6 has been found to induce β-oxidation through AMPK,
stimulate the secretion of leptin in human retina and subcutaneous
adipose tissue, thereby affecting appetite and calorie intake, and
reduce the activity of lipoprotein lipase in the omentum by 56% and
in the subcutaneous adipose tissue by 68% (Lehrskov and
Christensen, 2019). Therefore, the decreased IL-6 levels in the
present study may be related to lipid metabolism disorders
caused by PS-MPs.

Non-targeted metabolomics, as an efficient and
comprehensive research method for analyzing changes in body
metabolites, has been widely used in toxicology research. In this
study, with the increase in PS-MPs exposure concentration,
metabolites such as equol, 4-HBA, oxoadipic acid,

FIGURE 9
Analysis of significantly dysregulated metabolic pathways under PS-MPs exposure using MetaboAnalyst. (A) The color and the size of
circles represent the p-value (dark colour considered significantly impacted) and the hits of metabolites in the pathway, respectively. A1: 0.5 mg/kg/d
group VS. 0 mg/kg/d group, A2: 5 mg/kg/d group VS. 0 mg/kg/d group, A3: 50 mg/kg/d group VS. 0 mg/kg/d group. (B) Nicotinate and nicotinamide
metabolic pathways and linoleic acid metabolic pathways.
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guanidinosuccinic acid and alpha-D-glucose were significantly
upregulated, while ketoleucine, maltol, isobutyric acid, and
oleamide were significantly downregulated. Equol is an
isoflavone-derived metabolite formed by bacteria in the distal
small intestine and colon from soy glycosides (Setchell and
Clerici, 2010). It has the highest estrogenic and antioxidant
activity (Mayo et al., 2019). Evidence from observational
studies and short-term RCTs suggests that S-equol has anti-
atherosclerosis effects, improves arterial stiffness, and may
prevent coronary heart disease and cognitive impairment/
dementia (Sekikawa et al., 2019). In addition, equol also has
the potential to reduce oxidative stress in human skin and
prolong the lifespan of skin cells (Lephart, 2016). Studies have
shown that S-(−) equol (10-250 nM) increases the gene products
of nuclear factor erythroid 2-related factor 2 (Nrf2) and
Nrf2 target genes heme oxygenase-1 (HO-1) and NAD(P) H
(nicotinamide adenine dinucleotide phosphate) quinone
oxidoreductase 1 (NQO1), and can inhibit cell apoptosis
(Zhang et al., 2013). In addition, previous studies have found
that equol has an inhibitory effect on IL-6. Subedi et al. found that
it can inhibit the activation of microglia and enhance the
protection of neurons in vitro by inhibiting IL-6 (Subedi et al.,
2017). In addition, I-Chian et al. found that iequol
administration suppressed the expression of IL-6 and its
receptor, which in turn inhibited the inflammatory response
and bone erosion caused by rheumatoid arthritis in mice (Lin
et al., 2016). 4-HBA is a precursor of the benzoquinone ring of
CoQ (Pierrel, 2017). Coenzyme Q10 involved in many aspects of
cellular metabolism, including redox homeostasis and membrane

stability (Pierrel, 2017). It is primarily derived from endogenous
biosynthesis and depends on the interaction of multiple enzymes
in the mevalonate pathway (Bentinger et al., 2010). Studies have
shown that supplementation of coenzyme Q10 can improve
oxidative stress, mitochondrial dysfunction, and inflammation
in various diseases (Bentinger et al., 2010). COQ2 (4-HBA-
polyprenyltransferase) is an enzyme that catalyzes the
synthesis of coenzyme Q10. It catalyzes the glutarylation of 4-
HBA with an all-trans polyprenyl chain (Ashby et al., 1992). In
cell lines with COQ2 defects, the supplementation of 4-HBA can
fully restore endogenous coenzyme Q10-biosynthesis (Herebian
et al., 2017). Meanwhile, a-D-glucose is a natural
monosaccharide that plays a vital biological function in the
body. It is one of the primary sources of cell energy, it is
converted into energy through the glycolysis pathway in cells,
participating in cell metabolism processes. Therefore, based on
the above results, it is speculated that the upregulation of these
metabolites may play a protective role in myocardium and blood
vessels by inhibiting IL-6 related inflammation. This could
partially explain the negative pathological changes in the
myocardium and aorta in the present study.

The downregulated metabolites ketoleucine, maltol,
isobutyric acid, and oleamide are common chemical
substances that are widely used in different fields. Ketoleucine
is an essential substance for synthesizing muscle proteins and
plays an important role in the growth and repair of the body (Yee
et al., 1988). Maltol is a Maillard reaction product generated from
the thermal decomposition of starch or sucrose and is a natural
antioxidant and preservative (Anwar-Mohamed and El-Kadi,

FIGURE 10
Correlation analysis of serum parameters and differential metabolites.
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2007). Maltol also has anti-inflammatory and antioxidant
properties, inhibiting excessive production of MDA and
increasing the levels of antioxidant enzymes; and it improves
oxidative stress damage by activating the phosphoinositide 3-
kinase (PI3K)/protein kinase B (Akt) signaling pathway (Sha
et al., 2021). Isobutyric acid (IBA) is one of the end products of
intestinal microbial metabolism (Sanna et al., 2019). The level of
IBA in the serum of colorectal cancer patients is significantly
elevated and may be associated with colorectal cancer metastasis
(Chen et al., 2023). Oleamide is an endogenous fatty acid amide
with vasodilatory effects (Hoi and Hiley, 2006) and has a wide
range of beneficial effects on the central nervous system
(Fedorova et al., 2001). Correlation analysis of serum markers
and the above metabolites in the present study showed a negative
correlation between equol and serum MDA levels. These results
also imply that exogenous equol supplementation may protect
against PS-MPs-induced injury.

Further analysis through KEGG revealed that different
concentrations of PS-MPs have an impact on the metabolic
pathways of “protein digestion and absorption, arachidonic acid
metabolism, butyrate metabolism, basal cell carcinoma”. As the
exposure concentration of PS-MPs increases, changes also occur
in metabolic pathways such as “ABC transporters, β-alanine
metabolism, phenylalanine, niacin, and nicotinamide metabolism,
and lysine degradation”. The main role of these metabolites is to
maintain cell morphology and participate in energy metabolism.
Therefore, based on the above results, it is speculated that PS-MPs
may induce local inflammation and oxidative stress, leading to organ
damage, through mechanisms such as disrupting cell morphology
and affecting cell energy metabolism. Combined with the
pathological results of this study, the changes of myocardial,
aortic and blood biochemical indexes suggest that long-term
accumulation of high-dose PS-MPs may have potential damage
to the cardiovascular system. However, the activation of metabolites
such as equol and 4-HBA in rats may play a protective role in the
cardiovascular system by anti-oxidation and inhibiting
inflammatory response. This study provides a new idea and
theoretical basis for further exploring the cardiovascular toxicity
of PS-MPs and its prevention and treatment.

5 Conclusion

In summary, the impact of PS-MPs on the cardiovascular system
may be a process of low-toxicity slow damage, with myocardial cell
inflammation and oxidative stress as the main mechanisms.
Combined with the changes in biochemical indicators, we found
that IL-6 balance plays an important role. Untargeted metabolomics
results showed that activation of some metabolites, such as equol
and 4-HBA, had protective effects on the cardiovascular system.
Supplementation or regulation of metabolite production may
contribute to anti-PS-MPs damage.
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