
METHODS

Self-replicating artificial neural networks give

rise to universal evolutionary dynamics

Boaz Shvartzman1,2, Yoav RamID
1,3,4*

1 School of Zoology, Faculty of Life Sciences, Tel Aviv University; Tel Aviv, Israel, 2 School of Computer

Science, Reichman University; Herzliya, Israel, 3 Sagol School of Neuroscience, Tel Aviv University; Tel

Aviv, Israel, 4 Edmond J. Safra Center for Bioinformatics, Tel Aviv University; Tel Aviv, Israel

* yoav@yoavram.com

Abstract

In evolutionary models, mutations are exogenously introduced by the modeler, rather than

endogenously introduced by the replicator itself. We present a new deep-learning based

computational model, the self-replicating artificial neural network (SeRANN). We train it to

(i) copy its own genotype, like a biological organism, which introduces endogenous sponta-

neous mutations; and (ii) simultaneously perform a classification task that determines its fer-

tility. Evolving 1,000 SeRANNs for 6,000 generations, we observed various evolutionary

phenomena such as adaptation, clonal interference, epistasis, and evolution of both the

mutation rate and the distribution of fitness effects of new mutations. Our results demon-

strate that universal evolutionary phenomena can naturally emerge in a self-replicator

model when both selection and mutation are implicit and endogenous. We therefore suggest

that SeRANN can be applied to explore and test various evolutionary dynamics and

hypotheses.

Author summary

Computational self-replicators are often modeled with implicit definitions of fitness,

using various approaches such as biophysical modelling, molecular dynamics, ecological

dynamics, and computational logic. However, mutation is usually explicitly defined using

standard probability distributions such as the Poisson distribution. Here, we attempted to

develop a computational self-replicator with implicit fitness and mutation processes using

artificial neural networks, which are popular, complex, and flexible models for approxi-

mating solutions to a wide range of computational problems. The result is the self-replicat-
ing artificial neural network (SeRANN), which learns to copy its own genotype while

simultaneously solving a computational problem such as image classification. Approxima-

tion errors implicitly introduce mutations, which affect the source code of the networks,

changing network hyper-parameters (e.g, number of neurons in a layer), network archi-

tecture (connections between layers), and hyper-parameters of the learning algorithm.

We evolved a population of SeRANNs and observed various evolutionary phenomena

often seen in evolutionary experiments with microbes, demonstrating that this new evolu-

tionary framework provides a promising model for further studies in evolutionary theory.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shvartzman B, Ram Y (2024) Self-

replicating artificial neural networks give rise to

universal evolutionary dynamics. PLoS Comput

Biol 20(3): e1012004. https://doi.org/10.1371/

journal.pcbi.1012004

Editor: Roger Dimitri Kouyos, University of Zurich,

SWITZERLAND

Received: August 1, 2023

Accepted: March 17, 2024

Published: March 28, 2024

Copyright: © 2024 Shvartzman, Ram. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All source code,

including SeRANN implementation, evolutionary

framework, and analysis is available at https://doi.

org/10.6084/m9.figshare.23743077.

Funding: This research was partially funded by

Israel Science Foundation 552/19 (YR; isf.org.il),

Minerva Stiftung Center for Lab Evolution (YR;

http://minerva.mpg.de), AWS Cloud Credits for

Research program (YR; aws.amazon.com), NVIDIA

Accelerated Data Science GPU grant (YR; Nvidia.

com). The funders had no role in study design,

https://orcid.org/0000-0002-9653-4458
https://doi.org/10.1371/journal.pcbi.1012004
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012004&domain=pdf&date_stamp=2024-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012004&domain=pdf&date_stamp=2024-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012004&domain=pdf&date_stamp=2024-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012004&domain=pdf&date_stamp=2024-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012004&domain=pdf&date_stamp=2024-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012004&domain=pdf&date_stamp=2024-04-09
https://doi.org/10.1371/journal.pcbi.1012004
https://doi.org/10.1371/journal.pcbi.1012004
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.23743077
https://doi.org/10.6084/m9.figshare.23743077
http://minerva.mpg.de

Introduction

Evolution by natural selection requires the generation of heritable variation in traits that deter-

mine the reproductive success of individuals. In biology, this requirement is satisfied by error-

prone replication of genetically determined traits. Mathematical models, e.g., Fisher’s geomet-

ric model [1], apply explicit rules and functions both to determine fitness and to generate heri-

table variation, for example using a pre-determined mutation rate and a specific parametric

distribution of fitness effects. Even in studies that use sophisticated artificial-life models such

as Avida [2] and aevol [3] to test evolutionary hypotheses, reproductive success is implicit to

the model, whereas replication is still mostly explicit. In the field of neuroevolution, artificial

neural networks (ANNs) are used as individuals in evolving populations [4]. Reproductive suc-

cess is implicitly determined by the ANN performance on a task: it emerges from the complex

interaction between the task (e.g., classification) and traits of the ANN (e.g., type and number

of network layers, number of neurons in each layer). However, replication is still explicit: the

ANN genotype (i.e., genetic encoding) is copied by a genetic algorithm, rather than by the

ANN itself, and this algorithm adds new mutations to the replicated genotype following rules

defined by the modeler/algorithm developer [5].

There are major shortcomings to this approach for modelling evolution with explicit and

externally defined replication mechanisms. Models are limited by their assumptions. Hence,

models based on (sometimes simplistic) assumptions on how genetic variation is generated in

living organisms are limited to pre-defined trajectories and outcomes. This includes models

for studying evolution in general, and particularly models for studying the evolution of the

replication mechanism (evolution of the mutation rate, evolution of sex, etc.).

We propose that, like reproductive success, replication can also be internalized by ANNs;

that is, an ANN can approximately copy its own genotype. Therefore, both replication and

reproductive success can be implicit and endogenous, thereby avoiding the standard assump-

tions taken by evolutionary models and genetic algorithms, such as uniform randomness or

separation between alleles responsible for survival and reproduction and alleles responsible for

replication [6].

Existing computational evolutionary frameworks have produced exciting results. Avida [2]

has been used to study the evolution of mutational robustness [7], complex traits [8], the muta-

tion rate [9], sexual reproduction [10], genome architecture [11], drift robustness [12], and

more. In Avida, organisms are modeled by computer programs: sequences of instructions in

an assembly-like language. The instructions are processed by a CPU with three registers, two

data stacks, and I/O buffers. Each organism is assigned CPU time according to its fitness,

which is determined by its performance on Boolean logic operations (e.g., correctly computing

XOR), and therefore the emerging fitness landscape is rugged. Genetic variation is mostly

introduced at a rate explicitly determined by the modeler via copy errors and indels that occur

during replication and point mutations that occur during the individual lifetime. Implicit

mutations can occur during replication due to an incorrect copy algorithm in the parent pro-

gram, but these mutations are rare, often lethal, limited in their effect (i.e., no copy errors),

and can therefore be turned off by the modeler using a configuration option [2,13]. Another

computational framework, aevol, has been used to study the effects of mutation rate [14,15],

pleiotropy [3], and selection intensity [16] on genome architecture. In aevol, genomes are

modeled by a double-strand binary string, with specific signals for start and stop of coding

sequences, which are transcribed and translated to a triangular function (the protein). These

triangular functions are defined by their center, width, and height (which are encoded by the

coding sequence), and are combined to produce the phenotype. Fitness is then determined by

the fit of the phenotype function to a target environmental function, creating a complex fitness

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 2 / 23

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012004

landscape. Genetic variation is produced by point mutations, indels, duplications, transloca-

tions, and inversions, all randomly drawn from a set of explicit distributions defined by the

modeler.

These computational self-replicators are based on particular computational paradigms.

Importantly, ANNs are generic and flexible machine learning models that can approximate a

very wide range of complex functions and programs. Therefore, an evolutionary framework

based on ANNs can allow to compare and contrast multiple computational paradigms by

modifying the ANN architecture (CNN, LSTM, Transformer, etc.), the problem domain

(vision, language, decision making, etc.), and the training or optimization strategies (flavors of

stochastic gradient descent, MCMC, variational inference, etc.), to determine if and how these

specific choices affect the evolutionary dynamics.

We present a new kind of computational self-replicator: the self-replicating artificial neural
network, or SeRANN (Fig 1). Its genotype is a bit-string of 100 bits that encodes its phenotype,

which is a Python [17] source code of arbitrary length. SeRANNs “learn” (in the sense of

machine learning) to faithfully copy their own genotypes and simultaneously solve an indepen-

dent computational task that determines their fertility, a component of reproductive success.

Hence, both reproductive success and replication are implicit and endogenous: errors in the

replication task implicitly introduce mutations to offspring genotype, which can introduce

Fig 1. SeRANN evolution framework. (A) A juvenile SeRANN individual “learns” to both classify images from the training set and to copy arbitrary

genotypes using standard deep-learning techniques. (B) An adult SeRANN then classifies images from the test set and copies its own genotype, producing a

classification accuracy, which is its fertility, and replicated genotypes, which are its offspring genotypes. (C) The individual fertility is compared to the

population mean fertility to determine the individual’s expected contribution to the offspring generation–which are then sampled from the offspring genotypes

of all individuals. (D) Each genotype is decoded to a source code using the RiboDecoder (see Methods) and executed by the Python interpreter. Only valid

source codes, which don’t cause execution errors (e.g., due to syntax errors), continue to the next generation. (E) The source code of the ancestor of the

population, see Fig B in S1 Text for the genotype and supporting code.

https://doi.org/10.1371/journal.pcbi.1012004.g001

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 3 / 23

https://doi.org/10.1371/journal.pcbi.1012004.g001
https://doi.org/10.1371/journal.pcbi.1012004

heritable modifications to offspring phenotype. Notably, only neural-network architecture and

hyper-parameters are defined in the source-code phenotype and are thus inherited via the

genotype and allowed to evolve, whereas network parameters (i.e., weights) are not inherited,

but rather found by “training” or “learning” with standard deep-learning techniques.

The SeRANN genotype-to-phenotype map or “genetic code” is implicitly defined by a sepa-

rate, custom-built artificial neural network, the RiboAE, which we pre-trained to efficiently

translate Python source code to bit-strings and back (seeMethods, Figs A and B in S1 Text).

During its training, the RiboAE learned a robust genetic code that results in a smooth fitness

landscape: small changes in the genotype (mutations) usually result in minor or even no phe-

notype modifications, and lethal mutations are unusual (though not rare), similar to transla-
tional robustness, which in biological organisms relates to the ability of proteins to fold

properly despite missense mutations [18].

We evolved a population of SeRANNs for 6,000 generations using a Wright-Fisher frame-

work with non-overlapping generations and a constant population size of 1,000 individuals. At

each generation (Fig 1), the number of offspring of each individual is determined according to

its performance on an image classification task (fertility selection), which represents a cognitive

task related to reproductive success. The genotypes of its offspring are copied by a self-replica-

tion (i.e., reconstruction) task, such that replication errors modify the offspring genotype, pro-

ducing heritable variation (mutation). The next generation is randomly sampled from the

offspring pool (genetic drift). Offspring genotypes are then translated (i.e., decoded) to source-

code phenotypes and executed by the Python interpreter (gene expression). Only offspring

with a valid source code that does not produce execution errors are retained (survival selec-
tion). Hence, SeRANN fitness is the product of fertility, which represents success in the classifi-

cation task, and survival, which represents success in the replication task. Surviving offspring

are “trained” using gradient descent and backpropagation with Keras [19], a deep-learning

library, producing the next adult generation (learning). Each individual is “trained” on a set of

57,000 classification examples from the well-studied MNIST handwritten digits dataset [20]

and 57,000 genotypes from our synthetic dataset (seeMethods) for five epochs (full passes over

the training set). It is then evaluated on a separate test set of 3,000 classification examples and

its own genotype to determine its fertility and generate its offspring genotypes. Because a SeR-

ANN has two tasks, classification and replication, the loss function used for “training” a SeR-

ANN is a weighted average of the loss functions of the two tasks. The loss_weight, which

determines the relative importance of the two tasks, is a hyper-parameter that is defined in the

SeRANN source code (Fig 1E). Thus, it is inherited through the genotype and evolves like a

modifier allele [21], allowing the mutation rate itself to evolve.

In the following sections we (i) provide a detailed description of SeRANN, RiboAE, and the

evolutionary framework, (ii) present the results of a 6,000-generation evolutionary experiment,

and (iii) conclude with a discussion of our framework and results.

Methods

We introduce a new framework for in-silico evolutionary experiments with populations of self-

replicating artificial neural networks, or SeRANNs. The genotype of a SeRANN is a bit string,

a sequence of zeros and ones. The phenotype of a SeRANN is a Python source code that imple-

ments the artificial neural network and can therefore be trained and evaluated like any other

machine-learning algorithm (Fig 1).

Importantly, spontaneous replication errors produce genetic mutations, thus providing a

source of genetic variation that can manifest to phenotypic variation. Replication errors may

in some cases even affect offspring survival due to lethal mutations that produce invalid source

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 4 / 23

https://doi.org/10.1371/journal.pcbi.1012004

code (e.g., Fig L in S1 Text). Fertility is determined by the performance of the SeRANN on an

independent task: MNIST image classification. We performed a long-term in-silico (simulated)

evolutionary experiment with a population of 1,000 SeRANNs, analyzed the emerging dynamics,

and compared them to dynamics from lab experiments with populations of living organisms.

SeRANN model

Formally, a SeRANN is an artificial neural network that approximates a function

ðŷ; g 0Þ ¼ FðX; gÞ, such that

F : Rm�n � f0; 1g
k
! ½0; 1�

L
� f0; 1g

k
:

The inputs are X, a grayscale image with m = 28 rows and n = 28 columns of pixels, and g, a

genotype bit-string with k = 100 bits (i.e. zero or one values). The outputs are ŷ, a probability

vector of size L = 10, where each entry ŷi in this vector represents the probability that the

image X is of the i-th class (
PL� 1

i¼0
ŷi ¼ 1); and g0, a bit-string genotype, also with k bits. See Fig

1 for an illustration.

The objectives of the SeRANN are (i) to accurately classify X to the correct class, by giving

the highest probability ŷi for the correct class i, and (ii) to faithfully replicate g, such that g0 is

as similar as possible to g. A SeRANN is trained using stochastic gradient descent with back-

propagation, a standard practice in deep learning [22] with the Adam optimizer [23]. The net-

work’s (trainable) parameters are randomly initialized before training using Glorot

initialization [24]. This initialization scheme is commonly used to prevent exploding and/or

vanishing gradients and to accelerate training convergence. We define two loss functions.

First, ℓX is the categorical cross entropy between the ground-truth vector y and the predicted

probability vector ŷ,

‘Xðy; ŷÞ ¼ �
XL� 1

i¼0
yilogðŷiÞ:

Second, ℓg is the mean squared error between the input genotype g and the output genotype g’,

‘g g; g
0ð Þ ¼

1

k

Xk� 1

j¼0
ðgj � g

0

jÞ
2
;

where gj is the j-th bit of genotype g. The loss function ℓ used for training SeRANNs is a weighted

average of the above loss functions,

‘ðy; ŷ; g; g 0Þ ¼ a � ‘Xðy; ŷÞ þ ð1 � aÞ � ‘gðg; g
0Þ ð1Þ

where the weight 0�α�1 is determined by a SeRANN source-code variable, loss_weight.

Hence, mutation and selection can change the value of this variable, which effectively controls

how much of the training effort is dedicated to each of the two tasks.

Source code representation

We implement SeRANN using the Python programming language [17] and the Keras

deep-learning library [19]. This library provides a simple API for defining, training, and evalu-

ating artificial neural networks. In general, each line describes a layer in the network, including

the layer type, its hyperparameters and the previous layer it is added upon.

The full SeRANN source code includes the loading of necessary packages (import state-

ments); declaring constant experiment parameters (classification image shape, genotype

length); the SeRANN layers definition; and the initialization of the network model object. Of

these, only the SeRANN layers definition varies between different SeRANN individuals.

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 5 / 23

https://doi.org/10.1371/journal.pcbi.1012004

Therefore, the SeRANN genotype only encodes this part of the source code, see lines 9–14 in

Fig B in S1 Text, which shows a full example source code of a SeRANN implementation.

Genetic code and ribosomal autoencoder

In biology, the genetic code is used to translate (i.e. decode) information encoded in the genetic

material (DNA or RNA molecules) to proteins, which, through interactions with the biotic

and abiotic environment, give rise to the phenotype. This translation is done by the ribosome.

Likewise, we use a genetic code to translate a bit-string genotype g to a Python source-code

string (Fig B in S1 Text). This source code is then interpreted by the Python interpreter to an

instance of a neural network model implemented in Keras, and trained by supervised learning,

gradient descent, and backpropagation, to produce the”adult” phenotype.

The viable SeRANN phenotypes space is constrained: SeRANN source code must be exe-

cutable by Python interpreter. This means that the genotypes space topology and the genotype-

phenotype encoding must be designed with a special care. Otherwise, the vast majority of

mutants (i.e. errors in replicated genotypes) would be doomed to immediate “death”, as their

translation will suffer from invalid syntax and fail to execute. The fitness landscape induced by

such flawed encodings would be sparse, or”perforated”—many potential solutions will be vir-

tually unreachable and the efficiency of the evolutionary process will reduce [25]; see also

“holey” adaptive landscapes [26].

To translate genotypes to source codes, we introduce the ribosomal autoencoder (RiboAE).

The RiboAE is an entirely separate neural network from SeRANN. We have trained it to

encode Python source code to a genotype bit-string, and faithfully decode it back to source

code, using unsupervised learning, which only requires examples of source codes, without

examples of genotypes. After training the RiboAE, it was kept constant, and did not change

during SeRANN evolution.

SeRANN source-code generator

To generate a significant number of synthetic SeRANN source-code examples, sufficient for

training the RiboAE, we implemented a heuristic SeRANN source code generator. This gener-

ator is a stochastic state machine (i.e., Markov chain) that defines the probability of transition

between a limited set of manually selected ANN layers (see Table D in S1 Text). For example,

given that the current layer is a convolutional layer, the next layer will be a pooling layer with

probability 0.7, another convolutional layer with probability 0.2, or a fully-connected layer

with probability 0.1.

The hyper-parameters of each network layer were drawn from a discrete normal distribu-

tion around reasonable expected values. For example, we sampled the number of neurons in a

fully-connected layer from a normal distribution, N(μ = 64,σ = 15), clipped the values to lay

between 8 and 128, and rounded them to the nearest integer.

To ensure the validity of the generated SeRANN source codes, we enforced a general struc-

ture: a fixed-size input layer, a merge layer (to join both classification and replication input

branches) and a fixed-size output layer. Thus, we allowed SeRANN source-code examples to

diverge by the number of hidden layers, and their types and hyper-parameters, while keeping

them compatible with the replication and classification tasks. We used the SeRANN generator

to generate 1,000,000 examples of SeRANN source codes.

RiboAE architecture and training

The RiboAE takes a neural network source code as input and is trained to output the exact same

source code (Fig A in S1 Text). The d-dimensional input and output of the RiboAE is a SeRANN

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 6 / 23

https://doi.org/10.1371/journal.pcbi.1012004

Python source-code string (Fig B in S1 Text), segmented into a sequence of atomic language

tokens. These tokens include variable names and literals (digits, brackets, etc.). The sequence of

tokens is padded to exactly d tokens using a special padding token. Tokens are mapped to integers

according to a predefined vocabulary (see complete vocabulary in Table A in S1 Text).

The RiboAE is composed of two components: the RiboEncoder and the RiboDecoder. The

RiboEncoder consists of an embedding layer, three convolutional layers, and a fully connected

layer. It takes as input a d-dimensional sequence that represents the source-code string as d
tokens, and encodes it to a binary k-dimensional genotype vector g, where k� d. This is paral-

lel to the molecular process of reverse translation (note that reverse translation and reverse

transcription are different processes). The RiboDecoder consists of a single convolutional

layer and a fully connected layer. It takes a binary k-dimensional genotype vector g as input

and reconstructs the original d-dimensional source-code input, by estimating the categorical

probabilities for each of the d tokens. This is parallel to the molecular process of translation.

In practice, the output of the RiboEncoder is a k-dimensional continuous variable, ϕ, where

each of its values (ϕ1, ϕ2,. . .,ϕk) is in the interval [0,1]. During training, ϕ is not provided

directly to the RiboDecoder, but rather interpreted as parameters of a k-dimensional Bernoulli

distribution. A random sample from this distribution is used as input to the RiboDecoder.

By training it to overcome minor replication errors, this random sampling procedure allows

the RiboDecoder to become robust to mutations. It also reduces the number of lethal “holes”

in the genotype space, as reflected by the distribution of fitness effects of new mutations. The

fraction of lethal mutations in our main experiment is 10%-20% lower than the one estimated

for viruses and yeast. Because the RiboAE is trained using backpropagation and gradient

descent [22] with the Adam optimizer [23], the aforementioned random sampling poses two

problems: backpropagation through random nodes, and gradient descent with discrete vari-

ables, which are not differentiable. We solve the first problem using the reparameterization

trick [27]: we transform a sample from a uniform distribution rather than directly sampling

from a Bernoulli distribution. Thus, the RiboAE reconstruction error can backpropagate

through the RiboDecoder and ϕ to the RiboEncoder.

The second problem arises because we would like our genotypes to be consistent with natu-

ral genotypes, which are discrete and consist of combinations of four nucleotides, A, G, C, and

T. Here, we use binary genetics (0 and 1), although other genetic systems such as quaternary

genetics (A, G, C, and T) are possible in future work. We solve the problem of non-differentia-

bility using the Concrete distribution, a “relaxed” version of the Bernoulli distribution [28]. For

each output of the RiboEncoder, ϕi, we sample a value from a continuous uniform distribu-

tion, ui* U(0, 1), and use the reparameterization trick, followed by a sigmoid transformation

(i.e. logistic function) to produce the genotype value gi,

zi ¼ log�i þ logui � logð1 � uiÞ

gi ¼
1

1þ e� zi
:

The resulting vector, g, consists of continuous values which are mostly very close to 0 and 1.

During inference, differentiability is no longer required. Instead of the discrete relaxation, the

values of gi are rounded to 0 or 1,

gi ¼
1; �i > 0:5

0; �i � 0:5
:

(

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 7 / 23

https://doi.org/10.1371/journal.pcbi.1012004

The RiboDecoder input is the vector g. Its output consists of d vectors of length r, fvig
d
i¼1

,

where r is the number of language tokens in the vocabulary, such that vi = (vi,1,. . ., vi,r). The

softmax transformation is applied to each vector vi, and the result is interpreted as a parame-

terization of a categorical distribution over the r possible language tokens (see Table A in S1

Text for the mapping of tokens to integers). Recalling that s is the input token sequence of the

RiboAE, and si is the integer mapping of the i-th token in s, the probability of si given vi is

P si j gð Þ ¼
expðvi;siÞPr
l¼1

expðvi;lÞ
: ð2Þ

The RiboAE is inspired by the variational autoencoder (VAE) of Kingma and Welling [27].

In both cases, the autoencoder is trained to minimize the reconstruction error between the

input and output. However, in contrast to the RiboAE, the VAE is simultaneously trained to

minimize the Kullback–Leibler divergence between the distribution defined by the encoder

output and a prior isotropic distribution (usually a standard normal distribution). Stochastic

replication has a biological interpretation: each cell division is equivalent to sampling a geno-

type from some distribution defined by the original genotype. However, prior constraints on

this distribution, as expressed by its divergence from some parametric distribution, have no

clear biological interpretation. Furthermore, during preliminary tests we found that introduc-

ing the Kullback–Leibler divergence term into the RiboAE loss function added difficulties into

the training process.

Thus, the loss function used for the training of the RiboAE, ℓAE, is the negative log-likeli-

hood of the input sequence s,

‘AEðs j gÞ ¼ �
Xd

i¼1
log Pðsi j gÞ;

where g is the result of applying the RiboEncoder on s and P(si | g) is defined in Eq (2).

Evolutionary model

The evolutionary dynamics in our experiment start with an isogenic ancestral population,

made of multiple copies of the same SeRANN. However, our framework also supports diverse

ancestral populations, with many different SeRANN. We model an asexual haploid population

with constant population size N and non-overlapping generations using a Wright-Fisher

model. The following steps describe how the next generation of SeRANN individuals is pro-

duced from the current generation (Fig 1B).

1. For each individual SeRANNi, 1� i� N, the source code si is interpreted and trained on a

classification task (X ! ŷ) and a replication task (g! g0). This step models the processes of

development and maturation of the phenotype.

2. Each SeRANNi is given its own genotype gi and a classification test set of fixed size, {Xj}j.
For each example (Xj,gi) in the test set, the mature individual SeRANNi produces a classifi-

cation prediction and a potential offspring genotype (ŷi;j; g 0i;j), where j indexes the test set.

Thus, a set of potential offspring genotypes fg 0i;jgj is produced.

The fertility Fi of SeRANNi is set to its classification accuracy (the fraction of correctly clas-

sified examples out of all classified examples). Its relative fertility is set to fi ¼
FiPN

j¼1
Fj

. The

relative fertility determines the expected contribution of SeRANN to the next generation in

step 4, and thus steps 2–4 model the process of natural selection.

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 8 / 23

https://doi.org/10.1371/journal.pcbi.1012004

3. The number of offspring of SeRANNi in the next generation Ni is sampled from a multino-

mial distribution Ni � MultðN; ðf1; f2; . . . ; fNÞÞ.

4. The genotypes of the next generation are sampled from all the potential offspring geno-

types, such that Ni individuals are drawn from the potential offspring fg 0i;jgj of individual i.

Steps 4–5 model the process of random genetic drift.

5. The RiboDecoder decodes (translates) each offspring genotype g0 to a new Python source-

code string s0. Together, steps 2–6 model the processes of replication and reproduction.

The set of decoded source-code strings s0 is the offspring population, a new population of N
SeRANN individuals that replaces the parental population. This offspring population is possi-

bly different from the parental population in terms of genotypes and phenotypes due to repli-

cation errors (i.e., mutations), selection and genetic drift. To propagate the next generations,

we repeat the training, reproduction, replication, and decoding operations in steps 1–6 (Fig 1).

Experimental setup

We conducted six evolutionary experiments: three with population size N = 100, and three

with population size N = 1,000. Our main experiment, with N = 1,000, continued for 6,000

generations. In all experiments, we used genotype length k = 100 and SeRANN source code

length shorter or equal to 350 language tokens (see Fig A in S1 Text). Genotype length, popula-

tion size, and number of generations can all be chosen by the modeler, and were chosen in this

study to allow for feasible computation time with the resources available to us: we found that

longer genotypes required larger neural networks to replicate them, which required more

computation time for training; whereas shorter genotypes were too short to faithfully encode

even small neural networks. We executed a short preliminary experiment with multiple differ-

ent ancestors, selected the ancestor that had the most viable descendants after 100 generations,

and used it as the ancestor of the population in the main experiment.

Because of the high computational requirements due to the parallel training of thousands

of neural networks, we employed GPUs to execute the simulations. For the experiments

with N = 100 we used a single NVIDIA Titan V GPU. For the experiments with N = 1,000,

we used a machine with eight NVIDIA Tesla V100 GPUs. An average generation took 9

minutes with N = 100 and 17.5 minutes with N = 1,000. The number of trainable parameters

in each SeRANN was limited to 2,000,000 to prevent excessive use of GPU memory. Any

SeRANN that exceeded this limit was removed from the population, and its fertility was set

to 0. The fraction of such SeRANNs in the population remained very low (about 0.03%),

suggesting that the number of parameters did not have a significant effect on networks

performance.

For the image classification task that determines the fertility, we used the MNIST handwrit-

ten digit image data set [20]. The training set included 57,000 example pairs of handwritten

digit image X and a synthetic bit-string genotype g, and SeRANNs were trained for five epochs

(each epoch is one complete pass on the entire training set). The evaluation set included 3,000

example pairs that were not used during training, and fertility was determined according to

the SeRANN classification accuracy on this evaluation set.

Fitness definition

The fitness of a SeRANN individual is determined by two factors. First, the classification accu-

racy of SeRANN on an evaluation set determines its absolute fertility, F. Second, some of the

SeRANN offspring will not be successfully interpreted as valid Keras neural networks due to

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 9 / 23

https://doi.org/10.1371/journal.pcbi.1012004

replication errors. The offspring survival rate of a SeRANN, V, is thus defined as the probabil-

ity that its offspring are valid.

Let Fi and Vi be the fertility and offspring survival rate of a SeRANNi, respectively. Recall

that the relative fertility is

fi ¼
Fi

PN
j¼1
Fj
:

where j indexes all individuals in the population. The distribution of the number of newborn

offspring of SeRANNi, Ni, is given by a binomial distribution with parameters N (population

size) and fi,

P Nið Þ ¼
N
Ni

� �

f Nii ð1 � fiÞ
N� Ni :

The distribution of the number of surviving offspring of SeRANNi, ~Ni, conditioned on the

number of offspring, Ni, is given by a binomial distribution with parameters Ni and Vi,

P ~Ni j Ni

� �
¼

Ni
~Ni

� �

V ~Ni
i ð1 � ViÞ

Ni � ~N i :

Thus, E[~Ni|Ni] = NiVi and E[Ni] = N fi. From the law of total expectation, the expected

number of surviving offspring is

E½ ~Ni� ¼ E½E½ ~Ni j Ni�� ¼ E½NiVi� ¼ ViE½Ni� ¼ NVi fi:

Let pi and p’i be the frequencies of SeRANNi in the current and next generation, respec-

tively. Thus, the relative fitness of SeRANNi is the expected change in frequency of SeRANNi

due to selection,

wi ¼ E
p0i
pi

� �

¼ NVifi ¼
ViFi

�F
;

where �F is the population mean fertility.

However, the relative fitness wi is unsuitable for comparison of individuals from different

generations because of the dependence on the population mean fertility, �F , which changes

over the course of evolution. Therefore, we also use the absolute fitness,

Wi ¼ Vi � Fi: ð3Þ

Fertility and offspring survival rate estimation

The training process of a neural network generally starts with random parameter initialization.

In SeRANN, this initialization can be interpreted as the stochastic aspect of the development

and learning processes, which stems from random environmental differences and chance.

Two SeRANNs, completely identical in their architecture, may differ in their parameters (net-

work weights) at the end of training. Thus, to accurately assess SeRANN’s properties, such as

its classification accuracy or replication fidelity, a single measurement obtained during the

exper- iment is insufficient. Moreover, mutations are rare, the number of offspring of each

individual is low (1.59 on average), and the genotype length is short (k = 100), and therefore

estimating the mutation rate from offspring produced during the experiment is likely to

underestimate the mutation rate.

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 10 / 23

https://doi.org/10.1371/journal.pcbi.1012004

Therefore, we performed multiple evaluation cycles of SeRANN properties retrospectively.

In each evaluation cycle, the individual SeRANN parameters were initialized from a random

distribution, and then the individual was trained and evaluated. The initialization and training

steps were identical to those performed during the experiment. After training, the individual

classification accuracy was evaluated on 3,000 unseen classification examples (as performed

during the experiment). Then, the individual SeRANN was given its own genotype paired with

random classification examples and the replicated genotypes were examined to estimate the

offspring survival rate and the mutation rate.

The offspring survival rate was estimated by first decoding the replicated genotypes to

source codes and testing their validity: each source code was executed by the Python inter-

preter, together with the required supporting code, and was marked valid only if no errors

were raised by the interpreter. The offspring survival rate was then estimated as the fraction of

offspring of a genotype that were valid. The mutation rate of a genotype g was estimated as the

average Hamming distance H(g,g’) between g and its offspring g’ (i.e., the number of sites in

which the two genotypes differ), mg ¼
1

Ng

PN
j¼1
Hðg; g 0jÞ, where Ng is the number offspring of

genotype g.

Epistasis estimation

Let gi be the vector containing the i-th site in the genotypes of h = 126,158 unique genotypes

from our main experiment (i = 1,. . ., k and k = 100). Let Fg be the fertility (classification accu-

racy) of genotype g. For each pair of sites in genotype g, i, j = 1,. . ., 100 such that i6¼j, we define

the linear regression model for predicting Fg as

F̂g ¼ bþ aigi þ ajgj þ ai;jgigj; ð4Þ

Fg � NormalðF̂ ; sFÞ;

where b, ai, aj, and ai,j are scalar coefficients.

We are especially interested in ai,j, which estimates the effect of the interaction between

sites i and j on fertility. Therefore, we also apply a simpler model in which we fix ai,j = 0, that

is, we assume no interactions between sites i and j. Using the likelihood-ratio test, we test if the

evidence supports a non-zero interaction coefficient. Since we perform 9,900 likelihood-ratio

tests (one for each pair of sites in the genotype, which has 100 sites), we adjust the p-values

using FDR correction [29].

We fitted these models by minimizing the negative log-likelihood with the least-squares

method implemented in SciPy. Fig G in S1 Text shows the estimated interaction coefficients

for every pair of sites in the SeRANN genotype.

Mutational robustness

The mutational robustness of mutations in genotype g is given by

l gð Þ ¼ 1 �

P
g0 jWg0 � Wg j �Mg!g0
P

g0Mg!g0
ð5Þ

where g0 iterates over all possible mutants of genotype g,Mg!g0 is the number of times geno-

type g mutated to genotype g0 during the experiment, andWg is the absolute fitness of the

genotype g (Eq 3), based on 50 classification accuracy measurements and 5,000 offspring sur-

vival rate evaluations per genotype. Thus, λ(g) is 0 for an optimal genotype (Wg = 1) with only

lethal mutants (Wg’ = 0), and 1 for a genotype with only neutral mutations (Wg’ = Wg).

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 11 / 23

https://doi.org/10.1371/journal.pcbi.1012004

Results

Overview

We developed SeRANN, a new neural-network-based computational self-replicator with implicit

and endogenous replication and reproductive success and explored its evolutionary dynamics.

We observed the emergence of universal evolutionary phenomena: changes in both genetic and

phenotypic diversity; adaptation by fixation of both synonymous and non-synonymous beneficial

mutations; clonal interference, selective sweeps, and genetic hitchhiking between concurrent

mutant alleles; epistatic interactions between genetic loci; and a bi-modal distribution of fitness

effects. Furthermore, we observed the evolution of the replication mechanism itself: the evolution

of a decreased mutation rate and increased mutational robustness. In the following we summarize

these phenomena, with additional details provided in the supporting material.

Adaptation

Adaptive evolution is clearly demonstrated by the increase in the population mean fitness and

the decrease in the population mean mutation rate (Fig 2). Indeed, we expect both to improve

over time: fitness due to natural selection favoring fitter genotypes; and the mutation rate due

to indirect selection favoring genotypes with lower mutation rates [21,30]. Though it

decreased, the mutation rate (measured in mutations per genome per generation) remained

orders of magnitude higher than that of viruses and microbes [31] and similar to that of micro-

bial populations with mutator alleles [32], suggesting further improvement could be achieved

with more time or longer genotypes.

The observed adaptation of the population can be explained by the appearance and fixation

of 24 mutant alleles (Fig 3); however, the mutation rate was high enough for the population to

remain genetically diverse so that no genotypes fixed during the experiment, and the genetic

richness (i.e., number of unique genotypes) remained over 40 (out of 1,000 individuals; Fig E

in S1 Text). Of the 24 mutant alleles that fixed, 16 were non-synonymous, that is, they were

expressed in architectural and hyper-parameter modifications to the source-code phenotype.

The rest were synonymous, with no effect on the source code (Table E in S1 Text), likely the

result of genetic hitchhiking [33].

As expected, mutant alleles with larger fitness advantage tended to fix faster (Fig 3C). More-

over, longer fixation times occurred during the initial phase of the experiment (first 270 gener-

ations), during which genetic richness was high and 13 mutant alleles fixed, including five

synonymous mutants, indicating the effects of genetic hitchhiking [33] and strong clonal inter-

ference [34].

Additional evidence for clonal interference [34] and for soft selective sweeps [35] is given by

the dynamics of the mutant allele at site 62 of the genotype (soft sweeps occur when multiple

copies of a beneficial mutation, rather than a single copy, appear and fix together). This mutant

allele started spreading in the population at generation 1,486, reaching frequency>90% within

940 generations (black line in Fig 3). Three genotypes carrying this mutant allele reached high

frequencies (60%-75%) but none fixed in the population (green, blue, and orange in Fig 4).

Although these genotypes could be considered an evolutionary lineage, they appeared more

than once during the experiment, from multiple and different parental genotypes, and indeed

they were not direct offspring of each other. Rather, they were separated by at least two muta-

tion events, and the intermediate mutant genotypes (i.e., the single mutants; purple, pink,

peach, and brown in Fig 4) did not reach high frequencies (<15%), as common during adapta-

tion on rugged fitness landscapes [36], for example due to stochastic tunneling, in which geno-

types are part of a successful evolutionary lineage despite never reaching high frequencies [37].

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 12 / 23

https://doi.org/10.1371/journal.pcbi.1012004

Diversity

We observed 103,666 unique SeRANN phenotypes (source codes). Surprisingly, the number

of unique genotypes was approximately 22% higher than the number of phenotypes, indicating

that synonymous mutations, which do not affect the phenotype, are common. The number of

unique genotypes in each generation consistently decreased during the experiment (Fig E in

S1 Text) likely due to (i) a gradual decrease in mutation rates, which caused less mutations to

accumulate; and (ii) selection purging unfavorable genotypes from the population.

Evolution of the mutation rate

Overall, we observed a significant reduction in the mutation rate. The start of the experiment

(first 15 generations) was characterized by a high mutation rate, between 2 and 7 mutations

per genotype replication, on average (Fig 2B), due to a high loss_weight value in the

Fig 2. Adaptative evolution. (A-C) In the first 270 generations, the population mean fitness increased and the mutation rate decreased, whereas the

mutational robustness fluctuated. (D-F) Starting around generation 1,350 (dashed line), major adaptations occurred in all three metrics. The number of

accumulated mutations increased, but the number of network parameters and the loss_weight value fluctuated rather than trended (Fig H in S1 Text). (G)

Population mean fitness (x-axis) vs. mutation rate (y-axis) over time (color, brighter is later). Panels D-G show a rolling average over 10 generations. Fitness:

survival rate × fertility (Eq 3); Mutation rate: number of mutations per genotype replication; Robustness: one minus average absolute fitness difference between

parent and mutant offspring (Eq 5).

https://doi.org/10.1371/journal.pcbi.1012004.g002

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 13 / 23

https://doi.org/10.1371/journal.pcbi.1012004.g002
https://doi.org/10.1371/journal.pcbi.1012004

ancestor, which controls the balance between the fertility and replication tasks during SeR-

ANN “training”. Therefore, mutant alleles that reduced the loss_weight value in favor of

replication contributed to a decreased mutation rate and can thus be considered anti-mutator
alleles, similar to those found in microbial and viral populations [38]: for example, in the long-

term evolutionary experiment with Escherichia coli, two MutYmutant alleles that appeared on

Fig 3. Allele frequency dynamics. (A) An initially high mutation rate led to early appearance and fixation of 13 mutant alleles in the first 270 generations. (B)

Starting from generation 1,350 (dashed line), 11 mutant alleles fixed: four very rapidly, and then roughly one every 585 generations. (C) The time to fixation (y-

axis) of 24 mutant alleles that successfully fixed (blue lines in A and B) declines with their fitness relative to the population mean at the time they appeared (x-

axis; gray line shows linear regression; Pearson correlation ρ = −0.6, P< 0.002). Allele 38 (pink) is the only one to reach fixation with relative fitness<1, at

0.988. Gray lines denote mutant alleles that never reached 90% frequency. Frequency curves smoothed for visualization using a rolling average over 10

generations. See Fig J and Table E in S1 Text for details on fixed mutant alleles.

https://doi.org/10.1371/journal.pcbi.1012004.g003

Fig 4. Genotype frequency dynamics: site 62. Due to clonal interference, the total frequency of all genotypes carrying a site-62 mutant allele (black) is much

higher than the frequencies of any site-62 genotypes; three genotypes that reached 60% are in green, blue, and orange. The inset shows the fertility and

mutation rate of the different genotypes decreasing over time, although the decrease in fertility (0.14%) is minor compared the decrease in mutation rate

(19.43%; Table F in S1 Text). These alleles and genotypes appeared more than once during the experiment, in multiple and different parental genotypes (e.g.,

m62 occurred 10,702 times during the experiment). Frequency lines smoothed for visualization using a rolling average over 10 generations.

https://doi.org/10.1371/journal.pcbi.1012004.g004

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 14 / 23

https://doi.org/10.1371/journal.pcbi.1012004.g003
https://doi.org/10.1371/journal.pcbi.1012004.g004
https://doi.org/10.1371/journal.pcbi.1012004

the background of aMutTmutator allele reduced the mutation rate by *56% and *36%

[32]. Additional SeRANN anti-mutators appeared later, reducing the mutation rate at the cost

of decreased fertility (Fig 4 inset, Table F in S1 Text). In two of these cases, the reduced muta-

tion rate can be explained by a 0.002 reduction in the loss_weight value. The resulting

decreases in the mutation rate (1.8–13%) were more dramatic than the decreases in fertility

(0.01–0.07%), which may explain the evolutionary success of these of anti-mutators. By the

end of the experiment (last 500 generations), the population mean mutation rate was as low as

0.04, a 175-fold reduction compared to its initial value. The variance-to-mean ratio of the

mutation rate (across the population) also decreased over time, from ~1.5 at the beginning of

the experiment to ~1 at its end. The latter is in agreement with the usual assumption that the

number of mutations per genome per generation is Poisson distributed.

The mutation rate was not uniform across the genome. A minority of sites received much

more mutations, with a mutation rate above 10−2. Interestingly, the sites with the highest

mutation rates were located at the two ends of the linear genome (position 0 and 99), which

could be explained by the convolutional layer used in SeRANN to process the genome (Fig M

in S1 Text).

Furthermore, we tested the effect of providing random images instead of MNIST images on

the evaluated mutation rate. We found that the mutation rate with random images was 2.3-fold

higher (paired t-test, P<3×10−6, Fig N in S1 Text), and that this increase in mutation rate is cor-

related with classification accuracy (Pearson correlation, ρ = 0.27, P = 0.0087). Therefore, the

classification task input (image) affects the performance of the replication task, indicating that

the two tasks are dependent, and that unexpected classification inputs can act as “mutagens”.

Surprisingly, we also found a synonymous anti-mutator allele in a genotype that reached rel-

atively high frequency (but did not fix; green line in Fig 4). This allele did not affect the source

code, but nevertheless had a significant phenotypic effect, reducing the mutation rate by ~16%

(g62-44 in Table F in S1 Text). This synonymous anti-mutator may be compared to the effect

of DNA-sequence context on mutation rates [39], such as in CpG hypermutability [40].

We also identified mutator alleles, which increase the mutation rate. For example, a mutant

allele that appeared in generation 805 caused a major source-code modification that switched

a neural network layer from the replication task to the fertility task (Fig 5). This increased the

fertility (from 0.93 to 0.96) but also dramatically increased the mutation rate (from <0.02 to

5.5 mutations per genotype replication). A similar phenomenon was described in Pseudomo-
nas aeruginosa, where mutator alleles (mutS, mutY, andmutM) not only increase the mutation

rate but also increase fitness by providing resistance to hydrogen peroxide [41], and in E. coli,
where deletion ofmutS not only produced a mutator phenotype but also extended to delete

part of rpoS, a gene well known for its adaptive potential under stressful conditions [42].

However, in our case the high mutation rate led to a very low offspring survival rate (0.06,

down from 0.99 in the parent). Interestingly, six mutations occurred in one of the mutator off-

spring, of which three were reverse mutations (i.e., toward the ancestral allele). The combined

effect of these six mutations was to revert the major source-code modification described

above, as well as to increase the loss_weight value by 0.002 in favor of fertility. The muta-

tion rate thus decreased back to its lower level, although at the cost of an overall 0.02 decrease

in fertility (Fig 5).

Distribution of fitness effects and mutational robustness

We accurately measured the fitness effect of every mutation and estimated the distribution of

fitness effects of new mutations, or DFE [43]. The estimated distribution is bi-modal and very

similar to those estimated in yeast [44] and viruses [45], with high densities of lethal mutations

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 15 / 23

https://doi.org/10.1371/journal.pcbi.1012004

and of neutral or slightly deleterious mutations (Fig 6). We also examined the evolution of the

DFE during the experiment. Strikingly, the frequency of lethal mutations decreased over time,

whereas the frequency of neutral and slightly deleterious mutations increased (Fig 6). This

observed evolution of the DFE is evidence for a phenomenon called “survival of the flattest”

[7,46,47]: when the mutation rate is high, as it is in our experiment, the robustness of an organ-

ism against lethal mutations is especially important for its survival. Therefore, it is evolutionary

advantageous to be in “flat” areas of the fitness landscape, in which mutations have small

effects on fitness. Although the fitness in “flat” areas might be sub-optimal, minimizing the

effects of mutations on fitness is more advantageous when mutations are common.

Further support for “survival of the flattest” is given by the increase inmutational robust-
ness, which is the extent to which a phenotype remains constant in the face of mutations

[48,49]. We evaluated the mutational robustness of genotypes that mutated at least once as one

minus the expected absolute difference between the parent fitness and the fitness of mutant

offspring (see Methods). Overall, the population mean mutational robustness increased over

time (Fig 2F) and was positively correlated with the population mean fitness (Fig I in S1 Text).

In contrast, Johnson et al. [50] found a negative correlation between fitness and mutational

robustness in the yeast Saccharomyces cerevisiae. A possible explanation for our observed posi-

tive correlation is that lethal mutations became less likely as the experiment proceeded (Fig 6),

which increased mutational robustness, but also increased offspring survival rates and there-

fore the population mean fitness.

Epistasis

Epistatic interactions between genetic loci were common and had a notable effect on the evo-

lutionary dynamics. This is exemplified by the case of the mutant allele at site 37 of the

Fig 5. Phenotypic evolution over three generations. The phenotype of three SeRANN individuals from the same lineage over three consecutive generations:

“grandparent”, “parent”, “offspring”. The grandparent had 14 mutant alleles (sites 6, 11, 31, 34, 35, 37, 38, 65, 66, 71, 77, 84, 85, 91) compared to the ancestor;

these are the 14 mutant alleles that fixed up to generation 1420 (Table E in S1 Text). The parent was born in generation 805 with an additional mutant allele in

site 0. This mutation caused a replication layer (g_layer in blue) to switch to a classification layer (X_layer in red). This required the layer names to

change, as well as the layer type to change from Conv1D to Conv2D. This modification in the source code had a strong effect on the fertility (up from 0.93 to

0.96), the mutation rate (from<0.02 to 5.5) and the offspring survival rate (down from 0.9988 to 0.063). Despite the low survival rate, the parent managed to

produce an offspring in the next generation (805), with 6 additional mutations. Three were reversions back to the ancestor allele at sites 0, 37, and 65. Three

were forward mutations to mutant alleles at sites 22, 47, and 83. These three alleles fixed in the population by generation 1439. The effect of the 6 new

mutations was to revert the earlier change that occurred in the parent as well as a 0.002 increase in the loss_weight (higher values favor classification). The

offspring fertility, at 0.94, decreased compared to the parent, probably due to the layer switch, but increased compared to the grandparent, probably due to the

increase in loss_weight (from 0.1026 to 0.1046). The offspring mutation rate, on the other hand, decreased back to a low level (<0.02) and therefore the

offspring survival rate increased to 0.9958, much higher than the parent, though not as high as the grandparent. The offspring genotype was the dominant

genotype of the three new mutant alleles (sites 22, 47, and 83, see Table E in S1 Text). See Fig D in S1 Text for source codes.

https://doi.org/10.1371/journal.pcbi.1012004.g005

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 16 / 23

https://doi.org/10.1371/journal.pcbi.1012004.g005
https://doi.org/10.1371/journal.pcbi.1012004

genotype,m37, which reached fixation in generation 195. Its effect on its dominant genotype

(the genotype that carried it and had the largest number of descendants) was a reduction in the

loss_weight value in favor of replication. Thus, it can be considered an anti-mutator allele.

However,m37 was effectively driven to extinction by generation 1,423 by genotypes that con-

tained the wildtype allele at site 37, w37, and a mutant allele at site 83,m83, becoming the only

allele to fix and then become extinct (specifically, the combination m37/m83 appeared in gener-

ation 804, and in the next generation back-mutations generated the w37/m83 combination).

We examined all genotypes that carried mutant alleles at sites 37 and/or 83 (Table B in S1

Text). We found that when both mutant alleles are present in the same genotype, the average

number of neurons (i.e., units) in the next-to-last layer of the SeRANN decreases by 14–17%

compared to the average number of neurons when only one mutant allele is present, respec-

tively. As a result, the average mutation rate increases by 2.5 to 5.5-fold. This has a dramatic

Fig 6. Distribution of fitness effects of new mutations. (A) The distribution of fitness effects (DFE) evolved during

the in-silico evolutionary experiment: the frequency of lethal mutations decreased (red line) and the frequency of

neutral and slightly deleterious mutations increased (blue line). (B) The DFE in the SeRANN population (blue) is bi-

modal with peaks for lethal and near-neutral mutations, similar to a DFE estimated in VSV (red; vesicular stomatitis

virus; data from [45]). VSV has more slightly deleterious mutations, whereas SeRANN has more near-lethal mutations,

perhaps because the DFE of SeRANN is still evolving. Fitness effects were estimated as the absolute fitness ratio

between mutant and parent such that values of 0,<1, 1, and>1 represent lethal, deleterious, neutral, and beneficial

mutations. 5,000 parent-mutant pairs were sampled for every window of 1,000 generations for panel A; the average

over all generations is shown in panel B.

https://doi.org/10.1371/journal.pcbi.1012004.g006

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 17 / 23

https://doi.org/10.1371/journal.pcbi.1012004.g006
https://doi.org/10.1371/journal.pcbi.1012004

effect on offspring survival rate, which drops from 93–98% with one mutant allele to 47% with

both mutant alleles. Thus, fitness with both alleles is lower than with either allele, leading to

sign epistasis between these alleles [51]. Because the effect ofm83 on the mutation rate is stron-

ger than that ofm37 and it only requires a minor sacrifice in fertility (Table B in S1 Text), natu-

ral selection favors m83, leading to its fixation and to the extinction ofm37.

We also performed a global epistasis analysis of all site pairs in the genotype, focusing on

fertility, for which we have greater statistical power. We estimated the epistasis coefficient of

all pairs of genotype sites, resulting in a distribution similar to those observed in vesicular sto-

matitis virus (Fig G in S1 Text) and in E. coli [52], with roughly half of the coefficients positive

and half negative.

Phenotypic variation

The degree to which the same genotype can develop to different phenotypes under the same

environmental conditions is called phenotypic variation. It has been extensively studied in

microbial systems, where it can arise from stochastic fluctuations in molecular or cellular pro-

cesses and attenuated by, e.g., feedback regulation [53]. In SeRANNs, network parameters are

randomly initialized before training and therefore multiple SeRANNs with the same architec-

ture trained on the exact same sequence of examples may have different parameters and there-

fore may differ in their fertility and replication performance.

We measured the variation in SeRANN fertility and offspring survival using repeated cycles

of initialization-training-evaluation. We found a wide range of fertility variation (between

0.001 and 0.02; 99th percentile <0.012) and an even wider range of offspring survival rate vari-

ation (between 0 and 0.4; median 0.09). Fertility variation positively correlated with average

absolute fitness (Pearson correlation, ρ = 0.52; permutation test, P<10−4; Fig F in S1 Text). In

contrast, the relationship between variation in offspring survival rate and absolute fitness is

more complex. Fitness cannot be close to the neither 0 nor 1 when offspring survival rate varia-

tion is high, because fitness is estimated by the average offspring survival rate times the average

fertility across all evaluation cycles (Eq 3). Thus, despite a lack of correlation between the stan-

dard deviation of offspring survival and absolute fitness (ρ = 0.002, P>0.73), the fittest SeR-

ANN individuals have low variation in offspring survival (Fig F in S1 Text).

Discussion

Computational and mathematical models of evolution have been developed and analyzed for

roughly a century [54], with crucial contributions to our current understanding of evolution-

ary biology. However, self-replication, and thus the generation of genetic variation, is usually

explicitly defined by the modeler, following her assumptions on the replication process in liv-

ing organisms. Even when some elements of self-replication are heritable, and can therefore

evolve, they are limited to a specific number of pre-determined options, and mutations are

usually introduced to the genotype with some probability by a rule-based algorithm [e.g., 55–

57]. In parallel, many attempts have been made to design logical self-replicators since the semi-

nal study of von Neumann et al. [58], for example using computer programs [59–61] and arti-

ficial neural networks [4]. Artificial neural networks (ANNs) are a promising model for self-

replication due to their ability to implicitly solve complex computational problems using effi-

cient learning algorithms running on high-performance graphical processing units (GPUs).

Moreover, ANNs have led to the recent explosion in artificial intelligence and are the focus of

a vast number of research projects and applications. Thus, an evolutionary framework based

on ANNs can benefit from this huge community that includes practitioners across diverse

fields, and from the vast number of approaches to construct and train ANNs for various

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 18 / 23

https://doi.org/10.1371/journal.pcbi.1012004

problem domains. However, in previous neural network-based replicators, reproductive success

was determined by the network performance on some task, whereas the generation of variation

was exogenous to the network and performed by an external genetic algorithm [62,63]. For

example, Le Nagard et al. [64] evolved artificial neural networks with a single input and output

and up to 20 neurons to study the relationship between task and phenotype complexity. In this

model, fitness was implicitly determined by a regression problem (approximating a Legendre

polynomial) and mutations were explicitly determined by randomly changing the network

weights according to a specified Gaussian distribution. In comparison, our framework uses neu-

ral networks with multiple inputs and outputs that allow more complex computational tasks; a

large and evolving number of neurons (>1,000); and importantly, self-replication as a distinct

computational task, resulting in implicit mutations that affect network architecture rather than

network weights, which are learned by backpropagation and gradient descent.

Here we have introduced an endogenous and implicit self-replication process to neural net-

works in the form of the self-replicating artificial neural network (SeRANN). Each network

“learns” how to approximately copy its own genotype, and therefore makes “mistakes”, or

approximation errors, which implicitly introduce spontaneous mutations to its offspring geno-

types. Selection then acts at the population level on the genetic variation produced by these

mutations, leading to evolution of network architecture and hyper-parameters. Therefore, as

in living organisms, mutagenesis is an emergent process, rather than an external and indepen-

dent process, that is determined by a complex process and interactions between different sites

in the genotype [6]. Moreover, the “learning” algorithm is defined by the SeRANN source

code, which can evolve, because it is encoded by the genotype. Thus, indirect or second-order

selection [30] leads to a reduced mutation rate, increased mutational robustness, and re-

modeling of the distribution of fitness effects (Figs 2 and 6). Note, however, that biological

organisms do not “learn” to replicate their genotypes: this element of our framework is not

intended to faithfully model biological replication but rather to allow artificial neural networks

to implicitly generate genetic variation.

Due to their implicit definitions of both reproductive success and self-replication, SeR-

ANNs can be considered more open-ended [65] than the mathematical and computational

models usually used in evolutionary biology and neuroevolution. Moreover, our model does

not assume common assumptions that may limit our view of evolution [6], e.g., that mutations

are Poisson distributed in time and uniformly distributed throughout the genome. Thus, the

genotype-phenotype map is stochastic, complex, and implicit, leading to unpredictable evolu-

tionary trajectories, as is the effect of the phenotype on both the fitness and the mutation rate

(e.g., Fig 5). Nevertheless, SeRANN evolutionary dynamics exhibit many of the hallmarks of

evolution studied in the experimental and theoretical literature: adaptative evolution is driven

by the appearance of new beneficial mutations but hindered by clonal interference, epistasis,

pleiotropy, hitchhiking, and drift, which together with soft sweeps, stochastic tunneling, phe-

notypic variation, and synonymous and reverse mutations give rise to complex evolutionary

dynamics at the population (Fig 2), allele (Fig 3), genotype (Fig 4), and phenotype (Fig 5) lev-

els. Our results highlight the universality of these evolutionary phenomena by demonstrating

their spontaneous emergence in a population of computational self-replicators with implicit

reproductive success and replication.

Our source code is available under an open-access license, and it is straightforward to mod-

ify components of SeRANN and the evolutionary framework, for example, by changing the

fertility task to another computational task that has a bounded differentiable loss function. In

future work, SeRANN can be applied to examine models and methods that have been pro-

posed for studying the genotype-phenotype-fitness mapping, a crucial factor in adaptive evolu-

tion [66,67] or to study the evolutionary role of phenotypic variation and developmental noise

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 19 / 23

https://doi.org/10.1371/journal.pcbi.1012004

(Fig F in S1 Text). Another future direction is the evolutionary trade-off between fertility and

replication fidelity, which is inherent in SeRANN due to the limited resources (i.e., network

parameters) shared by the two tasks of classification and replication. Furthermore, our frame-

work can be used to study potential evolutionary solutions to this trade-off, such as the evolu-

tion of a reproductive division of labor: two or more individuals (e.g., offspring of the same

parent) aggregate to form a group, and then differentiate to germ and soma—networks respon-

sible for the replication and classification of the whole group, respectively [68,69]. This could

be achieved by adding a hyper-parameter (like the loss_weight variable) that encodes the

tendency to aggregate and differentiate. A different future direction is the evolution of social

vs. individual learning [70]. In this scenario, an individual-learning SeRANN uses reinforce-

ment learning to update its parameters instead of supervised learning, whereas a social-learn-

ing SeRANN uses supervised learning where supervision is given by other individuals

(parents, non-parental adults of the previous generation, or even peers) rather than the ground

truth. The tendency to be an individual or a social learner can be encoded by a new hyper-

parameter and can therefore evolve. These are examples for how SeRANN could provide an

intriguing new framework to study questions in evolutionary theory.

Supporting information

S1 Text. Supplementary Figures and Tables.

(PDF)

Acknowledgments

We thank Douglas R. Hofstadter for his inspiring book “Gödel, Escher, Bach”; Lilach Hadany,

Marcus Feldman, Jonathan Friedman, Lee Altenberg, Yacov Hel-Or, Ohad Lewin-Epstein,

Tamar Friedlander, Yossi Yovel, Shimon Schocken, Daniel Weissman, Olivier Tenaillon, and

Tal Simon for discussions and comments; Alex Mintz and Tomer Ofir for help with computa-

tional resources. This research was partially funded by Israel Science Foundation 552/19 (YR;

isf.org.il), Minerva Stiftung Center for Lab Evolution (YR; minerva.mpg.de), AWS Cloud

Credits for Research program (YR; aws.amazon.com), NVIDIA Accelerated Data Science

GPU grant (YR; nvidia.com). The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Conceptualization: Boaz Shvartzman, Yoav Ram.

Funding acquisition: Yoav Ram.

Investigation: Boaz Shvartzman, Yoav Ram.

Methodology: Boaz Shvartzman, Yoav Ram.

Project administration: Yoav Ram.

Software: Boaz Shvartzman.

Supervision: Yoav Ram.

Visualization: Boaz Shvartzman, Yoav Ram.

Writing – original draft: Boaz Shvartzman, Yoav Ram.

Writing – review & editing: Boaz Shvartzman, Yoav Ram.

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 20 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012004.s001
http://isf.org.il/
https://minerva.mpg.de/
http://aws.amazon.com/
http://nvidia.com/
https://doi.org/10.1371/journal.pcbi.1012004

References
1. Fisher RA. The Genetical Theory of Natural Selection. New York, NY: Dover Publications; 1958. Avail-

able: http://archive.org/details/geneticaltheoryo031631mbp

2. Ofria C, Wilke CO. Avida: A Software Platform for Research in Computational Evolutionary Biology. Arti-

ficial Life. 2004; 10: 191–229. https://doi.org/10.1162/106454604773563612 PMID: 15107231

3. Knibbe C, Mazet O, Chaudier F, Fayard J-M, Beslon G. Evolutionary coupling between the deleterious-

ness of gene mutations and the amount of non-coding sequences. Journal of Theoretical Biology. 2007;

244: 621–630. https://doi.org/10.1016/j.jtbi.2006.09.005 PMID: 17055537

4. Stanley KO, Clune J, Lehman J, Miikkulainen R. Designing neural networks through neuroevolution.

Nature Machine Intelligence. 2019; 1: 24–35. https://doi.org/10.1038/s42256-018-0006-z

5. Miikkulainen R. Neuroevolution. Encyclopedia of Machine Learning. Boston, MA: Springer US;

2011. pp. 716–720. https://doi.org/10.1007/978-0-387-30164-8_589

6. Livnat A. Interaction-based evolution: How natural selection and nonrandom mutation work together.

Biology Direct. 2013; 8: 1–53. https://doi.org/10.1186/1745-6150-8-24 PMID: 24139515

7. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C. Evolution of digital organisms at high mutation rates

leads to survival of the flattest. Nature. 2001; 412: 331–3. https://doi.org/10.1038/35085569 PMID:

11460163

8. Lenski RE, Ofria C, Pennock RT, Adami C. The evolutionary origin of complex features. Nature. 2003;

423: 6. https://doi.org/10.1038/nature01568 PMID: 12736677

9. Clune J, Misevic D, Ofria C, Lenski RE, Elena SF, Sanjuán R. Natural selection fails to optimize muta-

tion rates for long-term adaptation on rugged fitness landscapes. PLoS computational biology. 2008; 4:

e1000187. https://doi.org/10.1371/journal.pcbi.1000187 PMID: 18818724

10. Misevic D, Ofria C, Lenski RE. Experiments with digital organisms on the origin and maintenance of sex

in changing environments. The Journal of heredity. 2010; 101 Suppl: S46–54. https://doi.org/10.1093/

jhered/esq017 PMID: 20200140

11. Misevic D, Ofria C, Lenski RE. Sexual reproduction reshapes the genetic architecture of digital organ-

isms. Proc R Soc B. 2006; 273: 457–464. https://doi.org/10.1098/rspb.2005.3338 PMID: 16615213

12. LaBar T, Adami C. Evolution of drift robustness in small populations. Nature Communications. 2017; 8:

1012. https://doi.org/10.1038/s41467-017-01003-7 PMID: 29044114

13. Adami C. Digital genetics: unravelling the genetic basis of evolution. Nat Rev Genet. 2006; 7: 109–118.

https://doi.org/10.1038/nrg1771 PMID: 16418746

14. Knibbe C, Coulon A, Mazet O, Fayard J-M, Beslon G. A Long-Term Evolutionary Pressure on the

Amount of Noncoding DNA. Molecular Biology and Evolution. 2007; 24: 2344–2353. https://doi.org/10.

1093/molbev/msm165 PMID: 17709335

15. Beslon G, Parsons DP, Sanchez-Dehesa Y, Peña J-M, Knibbe C. Scaling laws in bacterial genomes: A

side-effect of selection of mutational robustness? Biosystems. 2010; 102: 32–40. https://doi.org/10.

1016/j.biosystems.2010.07.009 PMID: 20655979

16. Batut B, Parsons DP, Fischer S, Beslon G, Knibbe C. In silico experimental evolution: a tool to test evo-

lutionary scenarios. BMC bioinformatics. 2013; 14 Suppl 1. https://doi.org/10.1186/1471-2105-14-S15-

S11 PMID: 24564457

17. Van Rossum G, others. Python Programming Language. USENIX Annual Technical Conference.

2007.

18. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. Why highly expressed proteins evolve

slowly. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102:

14338–14343. https://doi.org/10.1073/pnas.0504070102 PMID: 16176987

19. Chollet F, others. Keras. GitHub; 2015. Available: https://github.com/fchollet/keras

20. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-Based Learning Applied to Document Recognition.

Proceedings of the IEEE. 1998;November. Available: http://ieeexplore.ieee.org/document/726791/

#full-text-section

21. Feldman MW, Liberman U. An evolutionary reduction principle for genetic modifiers. Proceedings of the

National Academy of Sciences of the United States of America. 1986; 83: 4824–7. https://doi.org/10.

1073/pnas.83.13.4824 PMID: 3460074

22. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature.

1986; 323: 533–536. https://doi.org/10.1038/323533a0

23. Kingma DP, Ba JL. Adam: A method for stochastic optimization. 3rd International Conference on Learn-

ing Representations, ICLR 2015—Conference Track Proceedings. 2015; 1–15.

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 21 / 23

http://archive.org/details/geneticaltheoryo031631mbp
https://doi.org/10.1162/106454604773563612
http://www.ncbi.nlm.nih.gov/pubmed/15107231
https://doi.org/10.1016/j.jtbi.2006.09.005
http://www.ncbi.nlm.nih.gov/pubmed/17055537
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1007/978-0-387-30164-8%5F589
https://doi.org/10.1186/1745-6150-8-24
http://www.ncbi.nlm.nih.gov/pubmed/24139515
https://doi.org/10.1038/35085569
http://www.ncbi.nlm.nih.gov/pubmed/11460163
https://doi.org/10.1038/nature01568
http://www.ncbi.nlm.nih.gov/pubmed/12736677
https://doi.org/10.1371/journal.pcbi.1000187
http://www.ncbi.nlm.nih.gov/pubmed/18818724
https://doi.org/10.1093/jhered/esq017
https://doi.org/10.1093/jhered/esq017
http://www.ncbi.nlm.nih.gov/pubmed/20200140
https://doi.org/10.1098/rspb.2005.3338
http://www.ncbi.nlm.nih.gov/pubmed/16615213
https://doi.org/10.1038/s41467-017-01003-7
http://www.ncbi.nlm.nih.gov/pubmed/29044114
https://doi.org/10.1038/nrg1771
http://www.ncbi.nlm.nih.gov/pubmed/16418746
https://doi.org/10.1093/molbev/msm165
https://doi.org/10.1093/molbev/msm165
http://www.ncbi.nlm.nih.gov/pubmed/17709335
https://doi.org/10.1016/j.biosystems.2010.07.009
https://doi.org/10.1016/j.biosystems.2010.07.009
http://www.ncbi.nlm.nih.gov/pubmed/20655979
https://doi.org/10.1186/1471-2105-14-S15-S11
https://doi.org/10.1186/1471-2105-14-S15-S11
http://www.ncbi.nlm.nih.gov/pubmed/24564457
https://doi.org/10.1073/pnas.0504070102
http://www.ncbi.nlm.nih.gov/pubmed/16176987
https://github.com/fchollet/keras
http://ieeexplore.ieee.org/document/726791/#full-text-section
http://ieeexplore.ieee.org/document/726791/#full-text-section
https://doi.org/10.1073/pnas.83.13.4824
https://doi.org/10.1073/pnas.83.13.4824
http://www.ncbi.nlm.nih.gov/pubmed/3460074
https://doi.org/10.1038/323533a0
https://doi.org/10.1371/journal.pcbi.1012004

24. Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Teh

YW, Titterington M, editors. Proceedings of the Thirteenth International Conference on Artificial Intelli-

gence and Statistics. Chia Laguna Resort, Sardinia, Italy: PMLR; 2010. pp. 249–256. Available: http://

proceedings.mlr.press/v9/glorot10a.html

25. Beasley D, Bull DR, Martin RR. An overview of genetic algorithms: Part 1, fundamentals. University

Computing. 1993; 15: 58–69.

26. Gavrilets S. Fitness Landscapes and the Origin of Species. Princeton University Press; 2004. Avail-

able: http://www.amazon.com/Fitness-Landscapes-Species-Monographs-Population/dp/069111983X

27. Kingma DP, Welling M. Auto-Encoding Variational Bayes. arXiv. 2013; 1–14.

28. Maddison CJ, Mnih A, Teh YW. The concrete distribution: A continuous relaxation of discrete random

variables. 5th International Conference on Learning Representations, ICLR 2017—Conference Track

Proceedings. 2017; 1–20.

29. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995; 57: 289–300.

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

30. Tenaillon O, Taddei F, Radman M, Matic I. Second-order selection in bacterial evolution: selection act-

ing on mutation and recombination rates in the course of adaptation. Research in Microbiology. 2001;

152: 11–16. https://doi.org/10.1016/s0923-2508(00)01163-3 PMID: 11281320

31. Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics. 1998;

148: 1667–86. https://doi.org/10.1093/genetics/148.4.1667 PMID: 9560386

32. Wielgoss S, Barrick JE, Tenaillon O, Wiser MJ, Dittmar WJ, Cruveiller S, et al. Mutation rate dynamics

in a bacterial population reflect tension between adaptation and genetic load. Proceedings of the

National Academy of Sciences of the United States of America. 2012; 110: 222–227. https://doi.org/10.

1073/pnas.1219574110 PMID: 23248287

33. Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genetical Research. 1974; 23:

23–35. https://doi.org/10.1017/S0016672300014634 PMID: 4407212

34. Gerrish PJ, Lenski RE. The fate of competing beneficial mutations in an asexual population. Genetica.

1998; 102/103: 127–144. https://doi.org/10.1023/A:1017067816551 PMID: 9720276

35. Pennings PS, Hermisson J. Soft sweeps II—molecular population genetics of adaptation from recurrent

mutation or migration. Molecular biology and evolution. 2006; 23: 1076–84. https://doi.org/10.1093/

molbev/msj117 PMID: 16520336

36. Obolski U, Ram Y, Hadany L. Key issues review: Evolution on rugged adaptive landscapes. Reports on

Progress in Physics. 2018. https://doi.org/10.1088/1361-6633/aa94d4 PMID: 29051394

37. Komarova NL, Sengupta A, Nowak MA. Mutation-selection networks of cancer initiation: Tumor sup-

pressor genes and chromosomal instability. Journal of Theoretical Biology. 2003; 223: 433–450. https://

doi.org/10.1016/s0022-5193(03)00120-6 PMID: 12875822

38. Schaaper RM. Antimutator mutants in bacteriophage T4 and Escherichia coli. Genetics. 1998; 148:

1579–85. https://doi.org/10.1093/genetics/148.4.1579 PMID: 9560377

39. Tenaillon O, Matic I. The Impact of Neutral Mutations on Genome Evolvability. Current Biology. 2020;

30: R527–R534. https://doi.org/10.1016/j.cub.2020.03.056 PMID: 32428494

40. Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Research. 1980; 8:

1499–1504. https://doi.org/10.1093/nar/8.7.1499 PMID: 6253938

41. Torres-Barceló C, Cabot G, Oliver A, Buckling A, MacLean RC. A trade-off between oxidative stress

resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria. Proceed-

ings of the Royal Society B: Biological Sciences. 2013; 280: 20130007. https://doi.org/10.1098/rspb.

2013.0007 PMID: 23446530

42. Bridier-Nahmias A, Launay A, Bleibtreu A, Magnan M, Walewski V, Chatel J, et al. Escherichia coli

Genomic Diversity within Extraintestinal Acute Infections Argues for Adaptive Evolution at Play. McMa-

hon K, editor. mSphere. 2021; 6: e01176–20. https://doi.org/10.1128/mSphere.01176-20 PMID:

33408235

43. Eyre-Walker A, Keightley PD. The distribution of fitness effects of new mutations. Nature Reviews

Genetics. 2007; 8: 610–8. https://doi.org/10.1038/nrg2146 PMID: 17637733

44. Wloch DM, Szafraniec K, Borts RH, Korona R. Direct estimate of the mutation rate and the distribution

of fitness effects in the yeast Saccharomyces cerevisiae. Genetics. 2001; 159: 441–52. https://doi.org/

10.1093/genetics/159.2.441 PMID: 11606524

45. Sanjuán R, Moya A, Elena SF. The distribution of fitness effects caused by single-nucleotide substitu-

tions in an RNA virus. Proceedings of the National Academy of Sciences of the United States of Amer-

ica. 2004; 101: 8396–401. https://doi.org/10.1073/pnas.0400146101 PMID: 15159545

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 22 / 23

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://www.amazon.com/Fitness-Landscapes-Species-Monographs-Population/dp/069111983X
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/s0923-2508%2800%2901163-3
http://www.ncbi.nlm.nih.gov/pubmed/11281320
https://doi.org/10.1093/genetics/148.4.1667
http://www.ncbi.nlm.nih.gov/pubmed/9560386
https://doi.org/10.1073/pnas.1219574110
https://doi.org/10.1073/pnas.1219574110
http://www.ncbi.nlm.nih.gov/pubmed/23248287
https://doi.org/10.1017/S0016672300014634
http://www.ncbi.nlm.nih.gov/pubmed/4407212
https://doi.org/10.1023/A%3A1017067816551
http://www.ncbi.nlm.nih.gov/pubmed/9720276
https://doi.org/10.1093/molbev/msj117
https://doi.org/10.1093/molbev/msj117
http://www.ncbi.nlm.nih.gov/pubmed/16520336
https://doi.org/10.1088/1361-6633/aa94d4
http://www.ncbi.nlm.nih.gov/pubmed/29051394
https://doi.org/10.1016/s0022-5193%2803%2900120-6
https://doi.org/10.1016/s0022-5193%2803%2900120-6
http://www.ncbi.nlm.nih.gov/pubmed/12875822
https://doi.org/10.1093/genetics/148.4.1579
http://www.ncbi.nlm.nih.gov/pubmed/9560377
https://doi.org/10.1016/j.cub.2020.03.056
http://www.ncbi.nlm.nih.gov/pubmed/32428494
https://doi.org/10.1093/nar/8.7.1499
http://www.ncbi.nlm.nih.gov/pubmed/6253938
https://doi.org/10.1098/rspb.2013.0007
https://doi.org/10.1098/rspb.2013.0007
http://www.ncbi.nlm.nih.gov/pubmed/23446530
https://doi.org/10.1128/mSphere.01176-20
http://www.ncbi.nlm.nih.gov/pubmed/33408235
https://doi.org/10.1038/nrg2146
http://www.ncbi.nlm.nih.gov/pubmed/17637733
https://doi.org/10.1093/genetics/159.2.441
https://doi.org/10.1093/genetics/159.2.441
http://www.ncbi.nlm.nih.gov/pubmed/11606524
https://doi.org/10.1073/pnas.0400146101
http://www.ncbi.nlm.nih.gov/pubmed/15159545
https://doi.org/10.1371/journal.pcbi.1012004

46. Lauring AS, Andino R. Exploring the fitness landscape of an RNA virus by using a universal barcode

microarray. Journal of virology. 2011; 85: 3780–91. https://doi.org/10.1128/JVI.02217-10 PMID:

21289109

47. Lauring AS, Frydman J, Andino R. The role of mutational robustness in RNA virus evolution. Nature

Reviews Microbiology. 2013; 11: 327–336. https://doi.org/10.1038/nrmicro3003 PMID: 23524517

48. Wagner A. Robustness, evolvability, and neutrality. FEBS letters. 2005; 579: 1772–8. https://doi.org/10.

1016/j.febslet.2005.01.063 PMID: 15763550

49. Masel J, Siegal ML. Robustness: mechanisms and consequences. Trends in genetics. 2009; 25: 395–

403. https://doi.org/10.1016/j.tig.2009.07.005 PMID: 19717203

50. Johnson MS, Martsul A, Kryazhimskiy S, Desai MM. Higher-fitness yeast genotypes are less robust to

deleterious mutations. Science. 2019; 366: 490–493. https://doi.org/10.1126/science.aay4199 PMID:

31649199

51. Weinreich DM, Watson RA, Chao L. Perspective: Sign epistasis and genetic constraint on evolutionary

trajectories. Evolution. 2005; 59: 1165–1174. https://doi.org/10.1111/j.0014-3820.2005.tb01768.x

PMID: 16050094

52. Martin G, Elena SF, Lenormand T. Distributions of epistasis in microbes fit predictions from a fitness

landscape model. Nature genetics. 2007; 39: 555–60. https://doi.org/10.1038/ng1998 PMID: 17369829

53. Smits WK, Kuipers OP, Veening J-W. Phenotypic variation in bacteria: the role of feedback regulation.

Nat Rev Microbiol. 2006; 4: 259–271. https://doi.org/10.1038/nrmicro1381 PMID: 16541134

54. Haldane JBS. A Mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation.

Mathematical Proceedings of the Cambridge Philosophical Society. 1927; 23: 838–844. https://doi.org/

10.1017/S0305004100015644

55. Haigh J. The accumulation of deleterious genes in a population—Muller’s Ratchet. Theoretical Popula-

tion Biology. 1978; 14: 251–267. https://doi.org/10.1016/0040-5809(78)90027-8 PMID: 746491

56. Tenaillon O, Toupance B, Le Nagard H, Taddei F, Godelle B. Mutators, population size, adaptive land-

scape and the adaptation of asexual populations of bacteria. Genetics. 1999; 152: 485–93. https://doi.

org/10.1093/genetics/152.2.485 PMID: 10353893

57. Ram Y, Hadany L. The Evolution of Stress-Induced Hypermutation in Asexual Populations. Evolution.

2012; 66: 2315–2328. https://doi.org/10.1111/j.1558-5646.2012.01576.x PMID: 22759304

58. von Neumann J, Burks AW, others. Theory of self-reproducing automata. IEEE Transactions on Neural

Networks. 1966; 5: 3–14.

59. Holland JH, others. Adaptation in natural and artificial systems: an introductory analysis with applica-

tions to biology, control, and artificial intelligence. MIT press; 1992.

60. Adami C, Brown CT. Evolutionary Learning in the 2D Artificial Life System “Avida.” arXiv. 1994. Avail-

able: http://arxiv.org/abs/adap-org/9405003

61. Langton CG. Artificial life: An overview. 1997.

62. Kitano H. Designing Neural Networks using Genetic Algorithms with Graph Generation System. Com-

plex Systems. 1990; 4: 461–476.

63. Yaeger L. Computational Genetics, Physiology, Metabolism, Neural Systems, Learning, Vision, and

Behavior or PolyWorld: Life in a New Context. Citeseer; 1994.

64. Le Nagard H, Chao L, Tenaillon O. The emergence of complexity and restricted pleiotropy in adapting

networks. BMC Evol Biol. 2011; 11: 326. https://doi.org/10.1186/1471-2148-11-326 PMID: 22059952

65. Stanley KO. Why Open-Endedness Matters. Artificial Life. 2019; 25: 232–235. https://doi.org/10.1162/

artl_a_00294 PMID: 31397603

66. Pigliucci M. Genotype-phenotype mapping and the end of the “genes as blueprint” metaphor. Philo-

sophical Transactions of the Royal Society B: Biological Sciences. 2010; 365: 557–566. https://doi.org/

10.1098/rstb.2009.0241 PMID: 20083632

67. Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, et al. Development of a Comprehensive

Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast. Cell. 2016; 166: 1585–1596.e22.

https://doi.org/10.1016/j.cell.2016.08.002 PMID: 27594428

68. Kirkwood TBL. Evolution of ageing. Nature. 1977; 270: 301–304. https://doi.org/10.1038/270301a0

PMID: 593350

69. Michod RE, Viossat Y, Solari CA, Hurand M, Nedelcu AM. Life-history evolution and the origin of multi-

cellularity. Journal of Theoretical Biology. 2006; 239: 257–272. https://doi.org/10.1016/j.jtbi.2005.08.

043 PMID: 16288782

70. Wakano JY, Aoki K, Feldman MW. Evolution of social learning: A mathematical analysis. Theoretical

Population Biology. 2004; 66: 249–258. https://doi.org/10.1016/j.tpb.2004.06.005 PMID: 15465125

PLOS COMPUTATIONAL BIOLOGY Self-replicating artificial neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012004 March 28, 2024 23 / 23

https://doi.org/10.1128/JVI.02217-10
http://www.ncbi.nlm.nih.gov/pubmed/21289109
https://doi.org/10.1038/nrmicro3003
http://www.ncbi.nlm.nih.gov/pubmed/23524517
https://doi.org/10.1016/j.febslet.2005.01.063
https://doi.org/10.1016/j.febslet.2005.01.063
http://www.ncbi.nlm.nih.gov/pubmed/15763550
https://doi.org/10.1016/j.tig.2009.07.005
http://www.ncbi.nlm.nih.gov/pubmed/19717203
https://doi.org/10.1126/science.aay4199
http://www.ncbi.nlm.nih.gov/pubmed/31649199
https://doi.org/10.1111/j.0014-3820.2005.tb01768.x
http://www.ncbi.nlm.nih.gov/pubmed/16050094
https://doi.org/10.1038/ng1998
http://www.ncbi.nlm.nih.gov/pubmed/17369829
https://doi.org/10.1038/nrmicro1381
http://www.ncbi.nlm.nih.gov/pubmed/16541134
https://doi.org/10.1017/S0305004100015644
https://doi.org/10.1017/S0305004100015644
https://doi.org/10.1016/0040-5809%2878%2990027-8
http://www.ncbi.nlm.nih.gov/pubmed/746491
https://doi.org/10.1093/genetics/152.2.485
https://doi.org/10.1093/genetics/152.2.485
http://www.ncbi.nlm.nih.gov/pubmed/10353893
https://doi.org/10.1111/j.1558-5646.2012.01576.x
http://www.ncbi.nlm.nih.gov/pubmed/22759304
http://arxiv.org/abs/adap-org/9405003
https://doi.org/10.1186/1471-2148-11-326
http://www.ncbi.nlm.nih.gov/pubmed/22059952
https://doi.org/10.1162/artl%5Fa%5F00294
https://doi.org/10.1162/artl%5Fa%5F00294
http://www.ncbi.nlm.nih.gov/pubmed/31397603
https://doi.org/10.1098/rstb.2009.0241
https://doi.org/10.1098/rstb.2009.0241
http://www.ncbi.nlm.nih.gov/pubmed/20083632
https://doi.org/10.1016/j.cell.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27594428
https://doi.org/10.1038/270301a0
http://www.ncbi.nlm.nih.gov/pubmed/593350
https://doi.org/10.1016/j.jtbi.2005.08.043
https://doi.org/10.1016/j.jtbi.2005.08.043
http://www.ncbi.nlm.nih.gov/pubmed/16288782
https://doi.org/10.1016/j.tpb.2004.06.005
http://www.ncbi.nlm.nih.gov/pubmed/15465125
https://doi.org/10.1371/journal.pcbi.1012004

