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Abstract

Plasmodium vivax is one of the most geographically widespread malaria parasites in the

world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the

significant characteristics of the P. vivax parasite is its ability to remain dormant in the

human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse

infections). Mathematical modelling approaches have been widely applied to understand P.

vivax dynamics and predict the impact of intervention outcomes. Models that capture P.

vivax dynamics differ from those that capture P. falciparum dynamics, as they must account

for relapses caused by the activation of hypnozoites. In this article, we provide a scoping

review of mathematical models that capture P. vivax transmission dynamics published

between January 1988 and May 2023. The primary objective of this work is to provide a

comprehensive summary of the mathematical models and techniques used to model P.

vivax dynamics. In doing so, we aim to assist researchers working on mathematical epide-

miology, disease transmission, and other aspects of P. vivax malaria by highlighting best

practices in currently published models and highlighting where further model development

is required. We categorise P. vivax models according to whether a deterministic or agent-

based approach was used. We provide an overview of the different strategies used to incor-

porate the parasite’s biology, use of multiple scales (within-host and population-level),

superinfection, immunity, and treatment interventions. In most of the published literature,

the rationale for different modelling approaches was driven by the research question at

hand. Some models focus on the parasites’ complicated biology, while others incorporate

simplified assumptions to avoid model complexity. Overall, the existing literature on mathe-

matical models for P. vivax encompasses various aspects of the parasite’s dynamics. We

recommend that future research should focus on refining how key aspects of P. vivax

dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity
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in susceptibility to infection, the accumulation of hypnozoite variation, the interaction

between P. falciparum and P. vivax, acquisition of immunity, and recovery under

superinfection.

Author summary

Malaria is a mosquito-borne disease and causes significant morbidity and mortality. P.
vivax is one of the five species that cause malaria and the parasites can stay hidden within

the human liver after an infection from an infected mosquito bite. These hidden parasites

are known as hypnozoites and can activate later, causing further infections. Mathematical

modelling techniques have been used since the 19th century to understand how P. vivax
malaria spreads through a population. In this study, we provide a review of all the mathe-

matical models that have been developed until May 2023 to capture P. vivax transmission.

We discuss some key aspects that are crucial when developing P. vivax transmission mod-

els and highlight the models that capture these aspects. We aim to assist researchers in the

field of P. vivax malaria by providing this summary and identifying the areas where fur-

ther focus is needed.

1 Introduction

Malaria remains a significant public health problem, with an estimated 247 million cases and

619,000 deaths reported worldwide in 2021 alone [1]. Malaria is most prevalent in the World

Health Organisation (WHO) African Region, while the South-East Asia Region has the sec-

ond-highest estimated malaria burden globally. Plasmodium vivax is currently the most geo-

graphically widespread of the malaria parasites, resulting in significant associated global

morbidity and mortality [2–5]. P. vivax has been responsible for approximately 45% of malaria

cases in the WHO South-East Asia Region since 2000 and is widely prevalent in countries

across Asia, Latin America, and the Pacific Islands [1, 3, 5]. P. vivax has often been overlooked

and mistakenly considered as “benign” in the past [5, 6]. More recent research has produced

evidence that, in addition to causing severe illness, P. vivax infection can cause long-term

health consequences such as anaemia, impaired cognitive development, and chronic kidney

disease [7–10]. The economic impact of P. vivax malaria is also significant, as the disease can

lead to decreased productivity, increased healthcare costs, and reduced economic growth in

endemic areas [11].

Mathematical modelling is an important tool that allows us to understand dynamic systems

in various fields ranging from physics and engineering to social sciences and biology [12].

Mathematical modelling can provide valuable insight into infectious disease dynamics and

plays an important role in informing public health policy and decision-making [13, 14]. Infec-

tious disease modelling has been widely used to understand the transmission of malaria, par-

ticularly Plasmodium falciparum, and the impact of interventions to control and eliminate

malaria [15, 16]. Modelling of P. vivax transmission differs from P. falciparum modelling, due

to the need to account for recurrent infections caused by the activation of hypnozoites, a dor-

mant liver stage of the parasite.

P. vivax parasites are introduced into the human body through infectious Anopheles mos-

quito bites. P. vivax parasites then travel to the liver, where they undergo a series of develop-

mental and replication stages [17, 18] before the liver-stage parasites are released into the
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blood, causing blood-stage infections. Individuals experiencing a blood-stage infection may

become symptomatic, with symptoms such as fever and fatigue, or be asymptomatic. One of

the significant characteristics of P. vivax infection is that, as part of the parasites’ life-cycle,

they can remain dormant in the liver for weeks or months [19] as hypnozoites that can cause

further blood-stage infections (called relapses) upon reactivation. Importantly, between 79 and

96% of P. vivax cases are due to relapses (in the absence of anti-relapse treatment) [20–23]. It

can be challenging to distinguish a relapse from other types of recurrent malaria, such as a

reinfection (i.e. malaria due to a new infectious bite) or a recrudescence (i.e. recurrence of

malaria due to incomplete elimination of blood-stage infections, often associated with treat-

ment failure) [24]. Relapse dynamics typically follow temperate or tropical phenotypes, relat-

ing to the period between primary infection and hypnozoite activation [25]. In tropical

regions, relapses occur frequently within a few weeks to a few months, whereas in temperate

regions, relapses typically occur between six to 12 months after initial infection. This variation

in relapse frequency relates to vector dynamics and the transmission potential of P. vivax. In

temperate regions, slower-relapsing hypnozoites may allow the parasites to survive colder

months when mosquitoes are less prevalent, whereas, in tropical regions, a faster relapsing fre-

quency may allow the parasite to maximise its transmission potential [26, 27]. As relapses con-

tribute to the majority of blood-stage infections, it is important to capture these relapse

dynamics when modelling P. vivax disease transmission.

The methods of incorporating hypnozoites and their associated relapse dynamics vary

across the P. vivax modelling literature. Modellers have often adopted the approach of assum-

ing a binary state (presence or absence) for hypnozoites harboured within an individual

[20, 28–31]. The P. vivax hypnozoite reservoir (i.e. the number of hypnozoites) is known to be

non-binary [32, 33]. Due to this, more recent P. vivax models have attempted to incorporate

the complex hypnozoite dynamics and capture the impact of the hypnozoite reservoir on

transmission dynamics [4, 32, 34–36].

The methods used to capture P. vivax immunity also vary across the modelling literature.

When individuals are first infected with malaria, they naturally develop some level of immu-

nity. This immunity can be defined as the body’s state of resistance to the infection, and, with

each subsequent infection, this acquired immunity is enhanced [37]. Modellers may consider

different types of immunity when modelling P. vivax transmission. This includes immunity

against new infections, protection against severe malaria, anti-parasite immunity (i.e. the abil-

ity to control parasite density upon infection), clinical immunity (i.e. protection against clini-

cal disease), and transmission-blocking immunity (i.e. immunity that reduces the probability

of parasite transmission to mosquitoes) [38–40].

One of the primary reasons for modelling infectious disease transmission is to understand

the potential impact of treatment strategies on incidence. In terms of P. vivax, a combination

therapy, known as radical cure, is needed to target both the acute infection and the dormant

hypnozoite reservoir [41–43]. The two drugs include: (i) a drug that clears parasites from the

blood (such as chloroquine or artemisinin-based combination therapy); and (ii) an 8-amino-

quinoline drug that clears hypnozoites from the liver (such as primaquine or tafenoquine).

Targeting the hypnozoite reservoir is crucial in controlling or eliminating P. vivax, as trans-

mission can be re-established from the reactivation of hypnozoites [32]. Incorporating Glu-

cose-6-phosphate dehydrogenase deficiency (G6PD) testing is recommended before

administering primaquine or tafenoquine as these drugs can cause life-threatening haemolysis

in individuals with G6PD deficiency, an enzymopathy affecting up to 30% of individuals in

malaria-endemic regions [44].

Other interventions that have been modelled include vector control, mass drug administra-

tion (MDA), mass screening and testing (MSaT), and P. vivax serological testing and
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treatment (PvSeroTAT). Vector control measures are recommended by the WHO in order to

achieve elimination [45]. MDA is an effective intervention for controlling malaria and was

advocated by the WHO in the 1950s to control malaria transmission [46]. MDA involves treat-

ing the entire population, or a well-defined sub-population, in a geographic location regardless

of their infection status [46, 47], such that both individuals who are infected and non-infected

are treated. In a radical cure MDA intervention, individuals are given artemisinin-based com-

bination therapy to clear blood-stage parasites and primaquine (or tafenoquine) to clear hyp-

nozoites. Due to the risks associated with radical cure treatment in G6PD–deficient

individuals, mass administration of radical cure is not recommended by the WHO without

first screening for G6PD deficiency [48–50]. Another strategy for reducing and eliminating

malaria is MSaT. This involves identifying and treating infected individuals within a specific

geographical location by mass testing of all individuals regardless of their symptom status [51].

MSaT is effective in reducing malaria transmission in areas with low to moderate malaria prev-

alence. However, its success depends on the availability of accurate diagnostic tools, effective

antimalarial drugs, and strong community participation [52, 53]. PvSeroTAT is a method for

identifying individuals with recent blood-stage infections who are potential hypnozoite carri-

ers by measuring antibodies and providing treatment with radical cure [54]. This method can

identify individuals likely harbouring a hypnozoite reservoir, therefore allowing targeted treat-

ment. Mathematical modelling has been used to understand how these different intervention

strategies may impact P. vivax transmission [29, 55, 56].

In this article, we synthesise the findings of a scoping review of existing mathematical mod-

els for population-level P. vivax transmission to provide a comprehensive overview of the

modelling frameworks and methods used to characterise P. vivax dynamics. In Section 2, we

provide the search and inclusion criteria. We discuss the search results (Fig 1) in Section 3 as

per the categorical structure in Fig 2 before concluding remarks and open problems are pre-

sented in Section 4.

2 Methods

We conducted a literature search on the 21st of May 2023, using the databases PubMed and

Google Scholar to capture all relevant studies using the search terms “hypnozoite”, “malaria”,

“vivax”, and “mathematical model” with Boolean operators. We screened the titles, abstracts

and full text of articles for the following inclusion criteria:

• the paper either applied or described a mathematical model of population-level P. vivax
transmission dynamics, and;

• the mathematical model of P. vivax incorporated hypnozoite dynamics, as this is a distin-

guishing feature of P. vivax parasites compared to other Plasmodium spp.

We excluded papers that:

• were only concerned with the within-host dynamics of P. vivax. Although within-host mod-

els of P. vivax dynamics are important for understanding P. vivax transmission, they were

not directly relevant to the aim of our study (i.e. to identify and compare mathematical mod-

els of population-level P. vivax transmission). Papers that modelled dynamics at both the

within-host and population level (i.e. multi-scale models) were included.

• only used or described mathematical models of Plasmodium species other than P. vivax (e.g.

a mathematical model of P. falciparum infectious disease dynamics). Models that accounted

for both P. vivax and another Plasmodium species were included.
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• were currently only available as a preprint.

Search terms were conducted in English only, and only literature published in English were

considered. No limitations regarding study location, publication status (e.g. accepted, but no

preprints), publication type, or publication year were included. To enhance the probability of

finding all relevant literature, we screened all references within the articles that met our inclu-

sion and exclusion criteria. Articles were then downloaded to identify key components, which

are discussed in Section 3.

We categorised models depending on whether they used a stochastic or deterministic

approach, and whether they were compartmental or agent-based. Deterministic models have

no random variation and typically utilise a compartmental structure within a population to

form differential equations to track the rate of flows between compartments. Stochastic models

incorporate random variation and are useful for questions and scenarios where small popula-

tion numbers or extinction are involved. In terms of P. vivax infectious disease modelling,

agent-based models explicitly model P. vivax transmission dynamics at an individual-level, for

example, modelling the interaction between humans and vectors and associating respective

state variables and parameters to each individual and vector. In our review, we found that

Fig 1. Summary of the article selection process, illustrating papers included and excluded at each stage of the

review process.

https://doi.org/10.1371/journal.pcbi.1011931.g001
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Fig 2. A summary of the 48 P. vivax transmission models currently available in the literature (published as of May 21, 2023)

[4, 20, 21, 24, 28–30, 32–35, 38, 39, 54–56, 58–88]. Related models (either modified or motivated by) are connected with a dashed

line. Similar/same models are connected with a solid line. The coloured boxes represent key features incorporated in the models

(see legend). The hexagonal boxes with the same name represent that the model was also implemented in other frameworks. The

timescale (non-linear) is shown on the left.

https://doi.org/10.1371/journal.pcbi.1011931.g002
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almost all stochastic models were also agent-based, so even though these features are not

mutually exclusive, we categorised models as (i) deterministic compartmental models or (ii)

stochastic agent-based models.

3 Search results

The initial search yielded 2289 articles, which was reduced to 1005 unique articles after remov-

ing duplicates between the two databases. After screening at the title level, a further 901 studies

were excluded as they did not fulfil the selection criteria in Section 2. After screening the

abstracts, a further 63 studies were excluded due to either (i) no underlying mathematical

model being described or (ii) the model was for P. falciparum parasites only. Five additional

studies were included from the selected studies’ references that were not initially identified. A

total of 48 studies were finally selected for review (see Fig 1 for a summary of the selection

process).

3.1 Model frameworks

In infectious disease dynamics, modelling frameworks typically involve a combination of

mathematical models, statistical analyses, and computer simulations that aim to capture the

complex dynamics of disease transmission. The Ross-Macdonald model [57], a compartmental

model initially developed to describe malaria transmission dynamics, has been widely used as

a modelling framework for P. vivax transmission. This modelling approach has been adapted

to investigate a range of vector-borne infectious diseases, and has helped inform public health

policies and intervention strategies. The first mathematical model describing P. vivax trans-

mission was introduced by—to the best of our knowledge—Zoysa et al. (1988) [38] in a Ross-

Macdonald style modelling approach. Following this, many models have now been developed.

Out of the 48 studies identified that incorporated a P. vivax transmission model, 38 (79%)

utilised a deterministic and differential equation (compartmental) framework [4, 20, 24, 28–

30, 32–35, 38, 39, 56, 58–82] and nine (19%) used a stochastic and agent-based framework

[21, 54, 55, 83–88] (Fig 2). Only one study (2%) used both deterministic and stochastic frame-

works [20] to model P. vivax transmission. Robinson et al. (2015) [20] developed the model in

a deterministic framework but implemented a stochastic version of the model as a continuous-

time Markov chain. For simplicity, we categorise this model as deterministic in Fig 2. Deter-

ministic models are often the first choice amongst modellers due to their simplicity in compar-

ison to stochastic models. Deterministic models are useful for understanding disease dynamics

in large populations. Stochastic models provide more realistic and accurate representations of

complex systems when dealing with small population sizes or low disease prevalence, as they

can account for the randomness and variability observed in real life [89, 90].

In contrast to the compartmental differential equation framework, agent-based models rep-

resent a system as a collection of individual agents that interact with each other based on a set

of rules or behaviours [91, 92]. The main difference between compartmental and agent-based

modelling frameworks is that a compartmental model uses aggregate variables or compart-

ments to represent the system, while agent-based models use individuals (agents) [91]. Out of

the eight studies that used an agent-based model to capture the dynamics of P. vivax transmis-

sion, only two studies modelled both the human and mosquito populations as agents [83, 84].

The other agent-based models modelled the mosquito populations as a deterministic compart-

mental process, such that they combined ordinary differential equations for mosquitoes with

an agent-based model for humans [21, 54, 55, 85–88]. Modelling mosquito dynamics as a

deterministic process is an approximate strategy if the size of the mosquito population is very

large and P. vivax is not near elimination. In this case, the average behaviour of the stochastic
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dynamics agrees with those of a deterministic process [92–94]. The actual behaviour of the sys-

tem depends on the interactions between individuals and mosquitoes, instead of averages.

Treating the mosquito compartment as a deterministic process means that modelling elimina-

tion is not straightforward, as there will always be some non-zero number of infectious mos-

quitoes remaining that can trigger an infection in humans again [87].

Environmental features, ecology, and mosquito habitat locations were explicitly included

when modelling malaria spread in the agent-based models that modelled both the human and

mosquito population as agents [83, 84]. The most recent agent-based models modelling P.
vivax dynamics [21, 54, 85, 86, 88] have evolved from a model introduced by White et al.
(2018) [55]. The White et al. (2018) [55] model has been adapted to capture disease epidemiol-

ogy in particular geographical settings [85], and to study the impact of different interventions

(drugs or vaccination) [21, 86, 88].

While agent-based models have many advantages, their use poses several challenges. One of

the main challenges of agent-based models is the difficulty in parameterising and calibrating

the model, given the large number of agents and their interactions [95–97]. For example,

despite being an agent-based model, parameterisation is done using an ordinary differential

equation system that describes the process in several models [21, 54, 55, 85]. Despite these

challenges in parameterisation, agent-based models also often offer a more intuitive represen-

tation of epidemiological processes. The computational demands of agent-based models can

be challenging [98], although with improving computer technology, this has become less of a

concern [99].

3.2 Population-level multiscale models

Multiscale disease modelling incorporates at least two interacting scales and provides insights

into disease dynamics across these scales that cannot be obtained from a single scale alone

[100]. Here we only focus on within-host population models as ‘multiscale models’. For P.
vivax, multiscale modelling approaches can incorporate the complex hypnozoite dynamics

and their relapse effects on onward disease transmission. Most models in the existing literature

only capture the population-level impact of P. vivax (boxes with a light lime green border in

Fig 2). Few models capture both within-host and population-level impacts (boxes with a strong

blue border in Fig 2) [21, 32, 35, 54, 55, 67, 85, 86]. The very first multiscale model for P. vivax
transmission was developed by White et al. (2018) [55], and modelled the within-host hypno-

zoite dynamics using an agent-based model that considered heterogeneity in exposure to mos-

quito bites. This built on White et al. (2014) [32], which was the first to develop a within-host

model that captured the dynamics of P. vivax hypnozoites. This multiscale model considered

the variability in the size of hypnozoite inoculum across each mosquito bite and was subse-

quently used to parameterise a separate transmission model that captured the entire structure

of the hypnozoite reservoir [55]. The White et al. (2014) [32] within-host model for temperate

settings assumed collective dormancy. This means that the hypnozoites established by each

mosquito bite progress through the dormancy states as a group or batch. This assumption may

be biologically unrealistic due to the independence of individual hypnozoite activation and

clearance dynamics within liver cells [101]. The other within-host models that were adapted

from White et al. (2018) [55] applied the same assumption regarding batch hypnozoite behav-

iour [21, 54, 85, 86].

Recent work by Mehra et al. (2020) [101] relaxed the collective dormancy assumption. This

enabled them to characterise the long-latency period of hypnozoite dynamics (a period of

latency prior to hypnozoite activation) modelled (light purple bordered box in Fig 2) in White

et al. (2014) [32] in analytical form. Later work by Mehra and colleagues embedded the
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activation-clearance model governing a single hypnozoite in an epidemiological framework

[34]. This framework accounts for successive mosquito bites, where each bite can simulta-

neously establish multiple hypnozoites [34, 102], and explores the epidemiological conse-

quence of radical cure treatment on a single individual. Anwar et al. (2022) [35] have since

developed a multiscale model motivated by White et al. (2014) [32] by embedding the frame-

work of Mehra et al. (2022) [34] for short-latency hypnozoites (deriving the relapse rate by

averaging the distribution of hypnozoite burden, which is dependent on the force of reinfec-

tion) into a simple population-level model that provides key insights into both within-host

level and population level dynamics. The within-host and population models were coupled at

each time step (thus producing a multiscale model) to incorporate key parameters that

describe the hypnozoite dynamics. This multiscale model can provide the hypnozoite distribu-

tions within the population and, more importantly, reduces the infinite compartmental struc-

ture of White et al. (2014) [32] into three compartments and relaxes the artificial truncation

needed in White et al. (2014) [32] for numerical simulation. Mehra et al. (2022) [36] proposed

an alternative approach, constructing a Markov population process to couple host and vector

dynamics whilst accounting for (short-latency) hypnozoite accrual and superinfection as per

the within-host framework proposed in Mehra et al. (2022) [34]. In the infinite population size

limit, Mehra et al. (2022) [36] recovered a functional law of large numbers for this Markov

population process, comprising an infinite compartment deterministic model. This infinite

compartment model was then reduced into a system of integrodifferential equations based on

the expected prevalence of blood-stage infection derived at the within-host scale [34]. This

construction yielded population-level distributions of superinfection and hypnozoite burden,

and has been generalised to allow for additional complexity, such as long-latency hypnozoites

and immunity [36].

3.3 Hypnozoite dynamics and variation

The eradication of P. vivax is challenging due to the presence of the hypnozoite reservoir,

which is undetectable and causes new infections long after the initial infection. In developing

the first mathematical model for P. vivax, Zoysa et al. (1991) were also the first to model the

effect of hypnozoite relapse on P. vivax transmission [39]. Since most P. vivax blood-stage

infections are due to the reactivation of hypnozoites rather than new primary infections (in the

absence of anti-relapse treatment), it is crucial that mathematical models incorporate the size

of the hypnozoite reservoir [103–107]. Zoysa et al. (1991) [39] assumed that the transmission

dynamics could be accounted for by modelling a hypnozoite reservoir of size two (to account

for up to two relapses). This assumption was later followed by Fujita et al. (2006) [30]. In real-

ity, the average size of the hypnozoite reservoir is likely to be more than two in endemic set-

tings, particularly those with high transmission intensity [33]. Despite having the relapse

characteristic that makes P. vivax parasites unique, Nah et al. (2010) [63] and Aldila et al.
(2021) [77] did not incorporate relapses in their P. vivax transmission model. In their model,

individuals did not harbour hypnozoites when infected with P. vivax and hence did not experi-

ence relapse after recovery from blood-stage infection.

Modelling hypnozoite dynamics and relapses can be addressed with varying levels of com-

plexity. The common modelling approaches to embedding hypnozoite dynamics into trans-

mission models are the (i) binary hypnozoite model, (ii) batch hypnozoite model, and (iii)

density hypnozoite model. The binary hypnozoite model is the simplest one, assuming that an

individual can be either infected with or without hypnozoites [33]. Individuals experience

relapse and clear hypnozoites at a constant rate. The batch hypnozoite model assumes that

each infectious mosquito bite contributes to a batch of hypnozoites where each batch of
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hypnozoite is independent of the other. Individuals can experience multiple relapses from

each batch, and the overall relapse rate depends on the total batches of hypnozoites present.

Hypnozoites are subject to clearance at a constant rate. This reduces one batch of hypnozoites

to a single set of dynamics, which is still truncated at a maximum number of batches [55]. The

density hypnozoite model is the most complex but most biologically accurate among the

approaches. In this approach, hypnozoite numbers within individuals are explicitly modelled,

where each infectious mosquito bite can contribute a number of hypnozoites. Hypnozoites

can either die or activate at a constant rate, and the dynamics of each hypnozoite are indepen-

dent and identically distributed [34, 55, 101].

Most P. vivax transmission models consider the hypnozoite reservoir as a single compart-

ment (i.e. binary approach), rather than explicitly accounting for a variable number of hypno-

zoites in the reservoir [20, 24, 28, 29, 33, 56, 58–66, 68–76, 78–81, 83, 84]. Only a handful of

models account for the variability in hypnozoite inoculation across mosquito bites (i.e. hypno-

zoite density model, boxes with a bright pink border in Fig 2) [4, 32, 34, 35]. If the size of the

hypnozoite reservoir is modelled explicitly, the number of compartments in the model

increases substantially. The very first model that accounted for the variation in hypnozoites

across mosquito bites was introduced by—to the best of our knowledge—White et al. (2014)

[32] for a short-latency strain (where hypnozoites can activate immediately after establish-

ment). To account for the variation of hypnozoites across bites, White et al. (2014) modelled a

system with an infinite number of compartments to represent individuals with different num-

bers of hypnozoites. In practice, this is truncated at 2(Lmax + 1) ordinary differential equations

(for human population only), where Lmax is the maximum number of hypnozoites considered.

In their model, the hypnozoite reservoir within individuals increases with new infectious bites

and decreases with both activation and death of hypnozoites. This infinite compartmental sys-

tem makes the model very complex, particularly when other important structures must also be

incorporated, such as individual heterogeneity in bite exposure. An agent-based model later

developed by White et al. (2018) [55], and other models that utilise this agent-based model,

consider variation in hypnozoites within individuals, but do not account for the variability in

hypnozoites across mosquito bites [21, 54, 85, 86]. Furthermore, instead of explicitly modelling

hypnozoites independently, they impose the batch hypnozoite model.

The multiscale model developed by Anwar et al. (2022) [35] accounted for the variation of

hypnozoites dynamics across bites. Unlike the White et al. (2014) [32] model, Anwar et al.
(2022) only utilised three compartments at the population level by embedding the within-host

model (short-latency) developed by Mehra et al. (2022) [34] as a system of integrodifferential

equations. This relaxes the artificial truncation for the maximum number of hypnozoites used

within the White et al. (2014) [32] model. Under a constant force of reinfection, Anwar et al.
(2022) [35] analytically proved that the multiscale model [35] exhibits an identical steady-state

hypnozoite distribution as the infinite ordinary differential equation model structure in White

et al. (2014) [32]. The advantage of the multiscale model by Anwar et al. (2022) [35] is that the

population-level component is considerably simpler than the 2(Lmax + 1) ordinary differential

equations of White et al. (2014) [32]. The transmission models proposed by Mehra et al.
(2022) [36] likewise account for variation in hypnozoite batch sizes, with Mehra et al. (2022)

[36] additionally accommodating long-latency hypnozoite dynamics. The models of Mehra

et al. [36] are formulated as systems of integrodifferential equations, informed by the within-

host framework of Mehra et al. (2022) [34]. The analyses of Anwar and Mehra et al. [35, 36]

provided insights into hypnozoite dynamics (e.g. the average size of a hypnozoite reservoir

within the population and the average relapse rate), in addition to disease dynamics.

Furthermore, hypnozoites have two different relapse patterns: (i) fast relapsing in tropical

regions and (ii) slow relapsing in temperate regions [25]. Depending on the setting the model

PLOS COMPUTATIONAL BIOLOGY Mathematical models of P. vivax transmission: A scoping review

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011931 March 14, 2024 10 / 26

https://doi.org/10.1371/journal.pcbi.1011931


is being developed for, these relapse patterns may also need to be taken into account. In most

of the models, the tropical relapse pattern is achieved with a shorter latent period [4, 20, 24,

28–30, 35, 38, 39, 56, 58–62, 64–66, 68–72, 74–76, 78–82]. Only a few models have considered

both temperate and tropical relapse patterns [32–34]. White et al. (2014) [32] and Mehra et al.
(2022) [34] explicitly accounted for both temperate and tropical relapse patterns by modelling

the hypnozoite dynamics. In their temperate model, after hypnozoites were established they

undergo a dormancy phase, which is enforced through additional model compartments. In the

dormancy phase, the hypnozoites do not activate and can only die. To accommodate the tropi-

cal pattern, this dormancy phase is ignored [32, 34]. White et al. (2016) [33] later captured the

temperate relapse pattern in a separate transmission model (with a binary hypnozoite model)

by considering additional compartments where hypnozoite-positive individuals stay for some

duration of time before they experience relapse. Kim et al. (2020) [73] modelled only the tem-

perate relapse pattern in Korea through a survival function to obtain the time to relapse.

3.4 Superinfection

Superinfection with malaria is a common phenomenon, especially in high transmission set-

tings, and can be defined as when an individual has more than one blood-stage infection with

the same malaria-causing parasite species at a given time [108]. For P. falciparum malaria,

when an infected individual (primary infection) receives a second infectious mosquito bite,

they can become infected with two different parasite broods. In reference to P. vivax malaria,

individuals can harbour hypnozoites in the liver even after they recover from a primary infec-

tion. Therefore, relapsing hypnozoites can provide another pathway to superinfection for indi-

viduals infected with P. vivax [108, 109].

When modelling P. vivax dynamics, it is important to consider the impact of superinfection

on recovery and transmission, especially in high transmission settings, as the abundance of

mosquitoes and the contribution of hypnozoite activation can frequently trigger superinfec-

tion. Superinfection can potentially delay recovery from infection [110, 111]. Most of the liter-

ature that incorporates superinfection in P. vivax transmission models (boxes with a brown

border in Fig 2) [21, 28–30, 32, 55, 72, 80, 85, 86] does so via the recovery rate [28–30, 32]. The

superinfection phenomenon was first introduced into malaria models by Macdonald (1950)

[112], who assumed “The existence of infection is no barrier to superinfection, so that two or
more broods or organisms may flourish side by side”. In the malaria modelling literature, it has

been assumed that each brood could be cleared independently at a constant rate. Following

this assumption, Dietz et al. (1974) [111] proposed a recovery rate under superinfection for P.
falciparum malaria, derived at equilibrium under a constant force of reinfection. This form of

the recovery rate was adopted in most studies that included superinfection via the recovery

rate. This approach is straightforward when hypnozoites are integrated into the model as a

binary state (i.e. an individual either has or does not have hypnozoites) [28–30]. Since White

et al. (2014) [32] accounts for the variation of hypnozoites, they modified the recovery rate

proposed by Dietz et al. (1974) [111] to account for the additional burden of hypnozoites; how-

ever, Mehra et al. (2022) [36] argued that this modified recovery rate does not hold in the pres-

ence of hypnozoite accrual.

Generally, there are two approaches when incorporating superinfection: (i) using a cor-

rected recovery rate that explicitly accounts for the history of past infections in the population

and hypnozoite accrual dynamics [4, 36, 113] and (ii) coupling the prevalence of blood-stage

infection (derived under a within-host model that accounts for superinfection) directly to the

proportion of infected mosquitoes [36]. The within-host model of Mehra et al. (2022) [34]

included superinfection, with each blood-stage infection (whether primary or relapse) being
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cleared independently, while the population-level model developed by Anwar et al. (2022)

[35], which built on work of Mehra et al. (2022) [34], did not incorporate superinfection. A

correction to account for superinfection, based on the recovery rate formulated by Nåsell et al.
(2013) [113], was proposed in Mehra et al. (2023) [36] and incorporated in later work by

Anwar et al. (2023) [4].

Superinfection was incorporated in later work, where it was assumed that different batches

of hypnozoites originated from different mosquito bites [21, 54, 55, 86]. Silal et al. (2019) [72]

assumed that superinfection increased the severity of the disease. That is, individuals will tran-

sition from lower to higher severity classes with a certain probability due to multiple infec-

tions. The only other study incorporating a superinfection-like phenomenon was Aldila et al.
(2021), who modelled P. vivax and P. falciparum co-infection and assumed that P. vivax domi-

nates P. falciparum [77], which does not closely resemble the definition of superinfection. This

study assumed that if an individual was currently infected with P. falciparum, they would

become infected with P. vivax if they received an infectious bite from a mosquito that was

infected with P. vivax. The assumption that P. vivax parasites dominate P. falciparum results in

the individual being infected with only P. vivax, which is not supported by the empirical bio-

logical evidence that shows that the parasitaemic load is much higher for P. falciparum [114].

Accordingly, it may not be reasonable to consider this to be a valid model of superinfections.

3.5 P. vivax and P. falciparum co-infection

Within the Asia-Pacific region, the horn of Africa, and South America, both P. vivax and P. fal-
ciparum parasites are common [72, 87]. For example, in 2019 in Cambodia, co-infection with

both P. vivax and P. falciparum accounted for about 17% of malaria cases [115]. In co-endemic

regions, P. falciparum infections are often followed by P. vivax infection, giving rise to the

hypothesis that P. falciparum infections trigger P. vivax hypnozoite activation [72, 116–118].

The high risk of P. vivax parasitaemia after P. falciparum infection is possibly related to reacti-

vation of hypnozoites [119–121]. Hypnozoites may be activated when P. falciparum parasites

have been introduced into the body [122] or when the individual is exposed to Anopheles spe-

cific proteins [27]. This increased risk of P. vivax blood-stage infection following a P. falcipa-
rum infection could alternatively be explained by spatial or demographic heterogeneity in

exposure and thus infection risk. Individuals either living in areas where both P. vivax and P.
falciparum are highly prevalent or those that engage in an activity bringing them in frequent

contact with infected mosquitoes (e.g. forest work) are more likely to be exposed to both para-

sites than the average person. Having a P. falciparum episode indicates the person has recently

been exposed to infectious mosquito bites and is thus likely to have hypnozoites from previous

exposure events (that may be triggered or activated spontaneously) or acquire a new primary

P. vivax infections following recovery from P. falciparum infection [123–125]. The lack of

diagnostics to differentiate primary infections and relapses further complicates determining

when an individual is infected with P. vivax hypnozoites. This makes it challenging to disen-

tangle whether P. falciparum infections cause relapses through the reactivation of hypnozoites.

It is also not yet clearly understood how P. vivax and P. falciparum interact, if they compete

within the host or if one species causes some, if any, protection against the other [126, 127]. A

systematic review and meta-analysis showed that mixed infections (P. falciparum and P. vivax)

can often cause a high rate of severe infection regardless of infection order [128]. This evidence

was in contrast to a previous study which suggested that severe mixed infections were more

likely to happen when P. vivax infection occurred on top of an existing P. falciparum infection

(i.e. superinfection), whereas the reverse scenario, P. falciparum infection on top of an existing

P. vivax infection, were more likely to result in a lower risk of severe malaria [129].
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Furthermore, there is likely ascertainment bias associated with mixed infections in areas with

co-circulating parasite strains, as efforts might be biased towards P. falciparum detection

[130]. This is likely to be particularly common during episodes of clinical malaria when parasi-

taemia of one species greatly exceeds the other, and the innate host immune response may sup-

press both infections. Gaining a better understanding of these cross-species interactions and

adjusting accounting for this co-existing phenomenon in the co-endemic region will require

multi-species transmission models. Only a handful of mathematical models included both

these Plasmodium species [56, 61, 62, 72, 77, 83]. While both P. vivax and P. falciparum species

are included in a single model by Aldila et al. (2021) [77], this model did not account for P.
vivax relapses. Five studies included both species but used two independent models for each

species, which did not allow for interactions between species [56, 61, 62, 77, 83].

Whether it is important to model species interaction depends on the particular geographi-

cal setting. If both parasites are co-endemic in a setting, and the research question being con-

sidered relates to both species, then it may be important to use a model that can capture the

interactions between the parasite species [72, 87, 116]. To the best of our knowledge, the first

model that accounts for the interaction between both species was developed by Silal et al.
(2019) [72]. In this study, a separate model (deterministic, meta-population) for both species

was proposed, and these two models were entangled at each time step to incorporate interac-

tions between the species, including treatment, triggering, and masking (non-P. falciparum
infections are misdiagnosed as P. falciparum). Following this work, the first agent-based

model transmission model accounting for both P. vivax and P. falciparum infections and treat-

ment was developed by Walker et al. (2023) [87]. This model had reduced complexity com-

pared with Silal et al.’s (2019) co-infection model, but used many of the same parameter values

[72] (co-infection models shown with a vivid orange bordered box in Fig 2).

3.6 Immunity

Immunity against disease acquired through infection is usually referred to as adaptive immu-

nity, and the primary function of adaptive immunity is to destroy foreign pathogens [131,

132]. Naturally acquired immunity to malaria is characterised by relatively rapid acquisition of

immunity against severe disease and a more gradual establishment of immunity against

uncomplicated malaria, while sterile immunity against infections is never achieved [133–136].

In co-endemic areas, clinical immunity to P. vivax is more rapidly acquired than that due to P.
falciparum [135].

How immunity is accounted for in mathematical models of malaria varies since different

models consider different types of immunity. For example, immunity against new infections,

immunity against severe malaria, anti-parasite immunity (i.e. the ability to control parasite

density upon infection), clinical immunity (i.e. protection against clinical disease), and trans-

mission-blocking immunity (i.e. reducing the probability of parasite transmission to mosqui-

toes). Immunity against new infections and severe malaria is assumed to be acquired through

infection. This reduces the probability of reinfection from an infectious mosquito bite and has

been modelled using up to two immunity levels [38, 39]. This type of immunity is assumed to

be boosted by infection [133]. Acquiring some partial immunity (i.e. some degree of protection

against malaria) following infection that wanes over time, is most common among published

models [56, 58–62, 64, 69, 70, 79, 84]. Some assumptions regarding immunity include that, if

treated, individuals acquire some level of immunity that reduces the probability of reinfection

(i.e. gain immunity against new infection) and that this wanes over time [32, 65]. The assump-

tion regarding permanent immunity against malaria is not considered valid, as immunity

often wanes rapidly when immune adults leave malaria-endemic regions [137]. Despite this,
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two models assumed that recovered individuals become permanently immune to P. vivax
[68, 77]. Another study assumed that only a fixed proportion of individuals are immune

against P. vivax rather than explicitly incorporating immunity into the model [83]. Strategies

for incorporating immunity into P. vivax transmission models thus widely vary, where some

assumptions are more realistic and appropriate than others.

Individuals who have not previously experienced malaria infection almost invariably

become infected when first exposed to infectious mosquito bites, as immunity against malaria

has not yet developed [137]. Repeated exposure to infectious bites will still likely result in infec-

tion, though these individuals may be protected against severe malaria or death [137]. Silal

et al. (2019) [72] applied the opposite assumption and assumed that repeated exposure to

infectious bites would likely result in severe infection however, with less probability per bite.

With increasing exposure, naturally acquired immunity will also give some level of protection

against symptomatic malaria. Adults living in endemic areas are more likely to have developed

protective immunity compared to children due to repeated exposure over their lifetime. Adults

living in endemic areas are likely to have experienced substantially more infectious mosquito

bites compared to children due to age (and therefore lengthened opportunity to acquire infec-

tious mosquito bites), greater skin surface area, and more time spent outside in environments

with a higher prevalence of mosquitoes [55, 138, 139].

Immunity should be considered when using mathematical models to capture underlying

disease dynamics. The assumption regarding immunity varies among models (boxes with a

purple border in Fig 2). The only model that explicitly accounts for the acquisition of immu-

nity that increases with new bites was developed by White et al. (2018) [55]. The assumption

in regards to both anti-parasite immunity (ability to reduce parasite density upon infection)

and clinical immunity (protection against clinical disease) depends on age and exposure to

mosquito bites which is modelled using partial differential equations [55]. They also assumed

that children acquired immunity through their birth parent’s immunity, which then decayed

exponentially from birth. Models that were adapted from Whiteet al. (2018) [55] also allow for

the acquisition of immunity [21, 54, 85, 86]. However, the immunity acquired from a primary

infection may protect more strongly against relapses (which are genetically related to the pri-

mary infection) than against a new, genetically distinct primary infection. That is, hypnozoites

established from an infectious bite, when reactivated, may be less likely to cause clinical infec-

tion. This is because the parasites could be genetically identical or related, which could elicit a

more protective immune response due to familiarity with the primary infection [117, 140].

Thus, relapses from the same batch of hypnozoites may only cause asymptomatic infections.

Despite this, no models to date have fully accounted for the relationship between relapse and

immunity. Model assumptions regarding the acquisition of immunity may be too simple to

capture the true underlying biology and dynamics.

Furthermore, as repeated exposure to infectious bites or relapse from the same batch of

hypnozoites might cause only asymptomatic infections, this reservoir of asymptomatic infec-

tions in addition to the hypnozoite reservoir might greatly affect the overall transmission

dynamics. This is recognised as an obstacle in malaria elimination [141, 142]. Asymptomatic

malaria infections have received less research attention than symptomatic infections in major

studies [143, 144] and even when developing mathematical models. Only a few models have

explicitly considered asymptomatic infections [55, 72, 74, 87].

3.7 Effect of interventions for malaria control

In most of the models included in this review, it was assumed that treatment would be targeted

towards infected individuals [21, 30, 32, 64–66, 70, 79, 80, 83, 85, 145], but a range of other
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interventions can contribute to malaria control. The impact of a pre-erythrocytic vaccine on

reducing P. vivax transmission has been studied and hypothesised that even with low efficacy,

it can substantially reduce transmission [67]. The impact of radical cure treatment on the

infected population has also been studied in models [21, 30, 32, 64, 85] where only a handful of

models incorporate G6PD testing [21, 64, 85]. Furthermore, 11 studies (23%) evaluated the

effect of MDA on disease transmission, despite few national control programs considering

MDA for P. vivax control [4, 20, 28, 29, 34, 54–56, 72, 87, 88] (boxes with a dark green border

in Fig 2). Since MDA is recommended as an important tool to reduce asymptomatic P. falcipa-
rum infection, it is also likely to be of great importance for P. vivax elimination [20, 146, 147].

One study examined the effect of multiple MDAs and MSaTs (up to two rounds) with different

drug combinations (blood-stage drug only, blood-stage drug and primaquine, or blood-stage

drug and tafenoquine), finding that MDA with tafenoquine following G6PD screening could

significantly reduce transmission compared to MSaT, given that no tools were available at the

time to identify individuals with hypnozoites [20]. The effect of long-lasting insecticide nets

along with MDA was studied using an agent-based model in Papua New Guinea, where the

model predicted that MDA could reduce P. vivax transmission by between 58% and 86% [55].

The same agent-based model was later used to investigate the effect of multiple treatment strat-

egies, including MDA, MSaT with light microscopy detection of blood-stage parasitemia, and

P. vivax serological test and treatment (PvSeroTAT) [54, 88], as well as the effect of chloro-

quine and primaquine with vector control [85], and the potential effect of three different types

of vaccines that target different stages of the P. vivax life cycle [86] in different geographical

settings. The impact of different intervention scenarios, including five annual rounds of MDA

on both P. falciparum and P. vivax across the Asia-Pacific, has been studied using a metapopu-

lation model [72]. The only mixed-species agent-based model [87] was used to investigate dif-

ferent treatment scenarios, including current practice, accelerated radical cure, and unified

radical cure provided with and without MDA (radical cure was with 14 days of primaquine

and a G6PD test while the MDA was with blood-stage treatments only).

The only within-host model that accounted for the effect of MDA on each of the hypno-

zoites and infections was proposed by Mehra et al. (2022) [34]. This model provided base

analytical expressions for the effect of multiple rounds of MDA on hypnozoite dynamics and

provided the epidemiological impact of one round of MDA on a single individual. Anwar

et al. (2023) recently embedded Mehra et al.’s work [34] and extended the model to study the

effect of multiple MDA rounds (up to N rounds) on both within-host and population-level

[4]. To the best of our knowledge, no other multiscale model has been developed that explic-

itly accounts for the effect of multiple rounds of MDA. The interval between MDA rounds

when multiple rounds are considered, varies across different models, mostly with either one

week [28, 29] or six months [20, 54] with different level of coverage. The only model that

provides optimal intervals if multiple MDA rounds were under consideration is by Anwar

et al. (2023) [4].

4 Open questions and conclusion

Mathematical modelling is a powerful tool for understanding, analyzing, and predicting com-

plex real-world phenomena, as well as simulating different scenarios, testing hypotheses, and

making informed decisions based on the results. Mathematical models have proven useful to

characterise P. vivax transmission in different parts of the world and provide insights into the

effect of different strategies to achieve elimination, including treatment, vaccination, and vec-

tor control. In this work, we provided a review of the existing mathematical models that cap-

ture P. vivax disease progression and transmission. P. vivax transmission dynamics are
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particularly challenging to model given the difficulties discerning relapses from reinfections

and recrudescences. The choice of transmission model framework comes down to the research

question at hand.

While mathematical models can provide key insights without the expense of large trials or

epidemiological studies, it is important to recognize that mathematical models are not perfect

representations of reality and are always subject to limitations, uncertainties, and assumptions.

Therefore, using mathematical models in conjunction with empirical data, expert knowledge,

and critical thinking is essential to obtain meaningful and reliable results.

Across the different approaches of mathematical modelling of P. vivax, there were varying

assumptions regarding parasite dynamics and acquisition of immunity. Some models were

motivated to capture realistic biological aspects of the parasite [32, 35, 38], or epidemiological

and public health aspects [4, 20, 21, 28–30, 33, 34, 39, 54–56, 64, 65, 67, 72, 74, 79, 83–87],

whereas some models were motivated to construct a novel or extended mathematical model of

P. vivax dynamics, i.e., focusing on the mathematical aspects of P. vivax dynamics [24, 58–63,

66, 68–71, 73, 75, 77, 78, 80]. As the dynamics of these type of models are well established, we

argue that more importance should be placed on using these models to address the current

hurdles and setbacks in achieving P. vivax elimination. For example, the effect of new drugs,

emerging drug resistance, and the potential effect of vaccination (when it becomes available).

Modelling different scenarios with the available tools under the current recommendations is

crucial to inform decision-making regarding malaria elimination. Furthermore, given that

some of the biological aspects of P. vivax are well understood, we argue that researchers should

shift their focus to modelling these important aspects.

The spatial distribution of P. vivax transmission is heterogeneous, and the number of hyp-

nozoites that an individual harbours might vary significantly; this contributes directly to the

risk of hypnozoite reactivation and P. vivax relapse [148, 149]. This heterogeneity can be par-

tially captured by modelling individuals’ movement using metapopulations and including par-

asite movement between different sub-populations [55, 85]. In addition to the heterogeneity in

bite exposure, individuals might be heterogeneous with regard to their likelihood of becoming

infected. This heterogeneity is referred to as individuals’ susceptibility to infection and is

affected by a number of factors including infection history, age, gender, race, and genetics and

highly impacts the disease dynamics [150–152]. However, none of the current models except

Corder et al. [74] explicitly consider this spatial heterogeneity in bite exposure or susceptibility

to infection. Given the high degree of heterogeneity of P. vivax risk in almost all populations as

well as heterogeneity in susceptibility to infection, future model development should focus on

this. As more than 80% of P. vivax infections may be due to relapse (in the absence of anti-

relapse treatment), and multiple hypnozoites can be established from each infectious bite,

modelling the dynamics of hypnozoite variation and activation is crucial [20, 34, 35]. Another

important aspect that requires more detailed attention is the interaction between multiple spe-

cies of Plasmodium, particularly in areas where P. falciparum and P. vivax are co-endemic

(Asia, the Horn of Africa, and the Americas). Studies show that there is a high risk of P. vivax
parasitaemia after P. falciparum infection that is possibly related to reactivation of hypnozoites

[119–121]. This is in line with the hypothesis that P. falciparum infection might trigger under-

lying P. vivax infection [72, 116–118]. Hence, we argue that this hypothetical triggering phe-

nomenon should be investigated when modelling P. falciparum and P. vivax interactions.

Future P. vivax modelling efforts should also account for superinfections. Where mosquito

abundance is high, transmission intensity is also likely to be high if malaria parasites are pres-

ent [109, 153–155]. In these scenarios, infected individuals are likely to experience multiple

episodes of infection at once (i.e. superinfection). Superinfection can significantly delay recov-

ery time, leaving ample opportunity for onward transmission from the infected individual to
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susceptible mosquitoes. P. vivax models should hence account for the transmission dynamics

associated with superinfection. Immunity against P. vivax strongly correlates to past exposure;

therefore, focus should also be placed on modelling the acquisition (and waning) of immunity

related to superinfection, as multiple concurrent exposures may boost immunity more than

singular exposures [36, 55]. Furthermore, as parasites from relapse are either genetically iden-

tical or related to a previous primary infection, they are more efficiently targeted by naturally

acquired immune responses previously developed from the primary infection than further,

genetically unrelated primary infections. As a consequence, relapses are less likely to be associ-

ated with (severe) clinical symptoms [117, 140]. This interplay between immunity and relapse

has not been fully addressed in any models developed to date. Furthermore, the reservoir of

asymptomatic infections as a consequence of clinical immunity can further contribute to

onward transmission and should also be accounted for along with immunity. Given these

important biological aspects, we suggest that future modelling should focus on developing the

above-mentioned key areas: (i) spatial heterogeneity in exposure risk and heterogeneity in sus-

ceptibility to infection, (ii) accumulation of hypnozoites variation, (iii) P. falciparum and P.
vivax interactions, (iv) acquisition of immunity, and (v) recovery under superinfection. Differ-

ent modelling communities have recently started focusing on these areas recently, for example,

modelling hypnozoite dynamics [34, 101], multispecies interactions (P. falciparum and P.
vivax) [72, 87], bite exposure immunity [55] and superinfection [4, 34, 36].

Future modelling efforts should also consider focusing on the role of splenic infections in

P. vivax transmission dynamics, prompted by recent findings indicating a large P. vivax par-

asite biomass within the spleen [156]. Additionally, improving the accuracy of models for

case management, accounting for dosing, adherence, and drug pharmacokinetics/pharmaco-

dynamics should also be the future focus as these play a crucial role in malaria elimination

[157–159].

No model currently includes all of the above factors that play a role in P. vivax transmission

due to the complexity the resulting model would have, and not all of the factors may need to

be modelled to answer the research questions at hand. The principle of parsimony is important

in modelling, whereby a complex model is not necessarily better, as complex models are asso-

ciated with more parameters and hence additional uncertainty and complexity in calibrating

to data [160, 161]. Additionally, a model developed for a particular setting might not be suit-

able for other settings. Therefore, when developing models to explore P. vivax disease progres-

sion with a focus on answering specific research questions, mathematical epidemiologists and

modellers should consider relevant aspects within the context of existing recommendations in

a specific geographical setting.

To address the outstanding research questions identified here, a suitably skilled interdisci-

plinary team is required. We hope that this review can contribute to developing the common

language needed for communication between different scientists by highlighting the progress

of P. vivax transmission models to date.
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