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Abstract

In many tasks, human behavior is far noisier than is optimal. Yet when asked to behave ran-

domly, people are typically too predictable. We argue that these apparently contrasting

observations have the same origin: the operation of a general-purpose local sampling algo-

rithm for probabilistic inference. This account makes distinctive predictions regarding ran-

dom sequence generation, not predicted by previous accounts—which suggests that

randomness is produced by inhibition of habitual behavior, striving for unpredictability. We

verify these predictions in two experiments: people show the same deviations from random-

ness when randomly generating from non-uniform or recently-learned distributions. In addi-

tion, our data show a novel signature behavior, that people’s sequences have too few

changes of trajectory, which argues against the specific local sampling algorithms that have

been proposed in past work with other tasks. Using computational modeling, we show that

local sampling where direction is maintained across trials best explains our data, which sug-

gests it may be used in other tasks too. While local sampling has previously explained why

people are unpredictable in standard cognitive tasks, here it also explains why human ran-

dom sequences are not unpredictable enough.

Author summary

When explicitly asked to be random, people are not random enough. Previous accounts of

these random generation tasks have argued that people are effortfully trying not to be pre-

dictable. In many other tasks, however, people also show random behavior, even when it

is unnecessary or outright disadvantageous. Here, we try to bridge this apparent gap. We

hypothesize that the randomness people produce when trying to be random and the ran-

domness that they display when trying to make the best choice has the same common

mechanism: drawing mental samples to make judgments and decisions. In two experi-

ments, we compare previous random generation accounts, which are task-specific in

nature, to the more general account of mental sampling that has been used to explain how

people behave in many other domains. We find that the flexibility of human random gen-

eration in our data is better explained by the mental sampling account. We also find a

novel empirical signature of momentum in random generation, which points to a new
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kind of mental sampling algorithm. If mental sampling governs behavior in random gen-

eration tasks and elsewhere, then this task has great promise in helping to understand

wider human behavior.

Introduction

In many tasks, people behave with some degree of randomness, even when they are not

required to do so. For example, in a task involving several repeated gambles, participants

might make a different choice when presented with the same set of options for a second time

[1]. Surprisingly, people behave randomly even to their disadvantage: when given options with

different reward probabilities, participants will choose each alternative proportionally to the

probability of being rewarded, rather than always choose the most advantageous option [2, 3].

To account for these inconsistencies in people’s behavior, almost all models of cognition

postulate that mental mechanisms include sources of randomness, typically modeled as

independent, identically distributed (iid) samples. This source of randomness within cogni-

tion is used to explain the noisiness of behavior, whether in higher-level cognitive processes

such as categorization or decision-making [4–7], and in lower-level processes such as per-

ception [8, 9].

Whether people can produce randomness has also been studied more directly, by asking

participants to generate sequences of items unpredictably. Having the ability to behave ran-

domly is important in adversarial situations, where being unpredictable is the optimal behav-

ior [10, 11], and perceiving someone as unpredictable is seen as an indicator of free will [12,

13]. In addition, departures from randomness have helped model the cognitive architectures

of neurotypical and neurodivergent populations [14, 15].

In a typical random generation experiment, participants are given a set of items (usually

numbers from 1 to 10) and are asked to produce them unpredictably, which instructions will

often exemplify as drawing items ‘out of a hat’ with replacement. Variations of the task have

involved doing the task vocally or using a keyboard or mouse [16], performing the task at dif-

ferent speeds [17], while multi-tasking [18], or collaboratively [19].

Paradoxically, despite people’s tendency to behave randomly in a myriad of domains that

do not require them to, this body of work has found that when asked to be unpredictable, peo-

ple are not random enough. Across experiments, the same picture emerges: people’s sequences

are typically more compressible than truly random sequences [15] (c.f. [20]) and display pre-

dictable patterns of serial dependence [21, 22], thus deviating significantly from the iid sam-

pling that many cognitive models include.

Previous accounts of people’s behavior in random generation tasks make no connection

between people’s excessively unpredictable behavior in many perceptual and cognitive tasks

from their performance when explicitly generating random sequences. Instead, they character-

ize being random as the product of effortful behavior. For example, in their network modula-
tion model Jahanshahi et al. [23] theorize that in a random generation task people create an

associative network with each possible response as a node, and with links (representing the

probability of transitioning from one item to another) having weights proportional to the

items’ strength of association. If operating alone, this network would produce greatly stereo-

typed responses, but a second component of their model—the controller—inhibits the stron-

gest links to enable variability, while monitoring the output to modulate its intervention on

the network. Similarly, another popular account, Baddeley’s schema account [24], postulates

that in random generation tasks people follow deterministic, learned action sets (schemas),
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and switch between sets based on a monitoring process that evaluates how unpredictable the

resulting sequence is and changes strategy if randomness is perceived to decline.

According to these accounts, people’s deviations from randomness can be explained by

biases regarding which schemas are preferred and limitations in how often schemas are

changed and how well randomness is monitored; or by limitations in the controller’s ability to

inhibit links in the associative network. While these approaches can explain people’s flaws

when producing random sequences, they are, however, specific to the requirements of the ran-

dom generation task, and would not apply to other tasks in which randomness has been

observed.

Recent work has, however, raised the possibility that a single mechanism—local sampling—

might explain both the excessive noisiness of many aspects of human behavior and the exces-

sive predictability of random sequence generation. It turns out that randomness in other tasks

is also typically not iid [25]. Instead, the noise in people’s behavior has a rich structure, includ-

ing long-term autocorrelations [26, 27]. Moreover, it has been suggested that these patterns

arise from a general-purpose approximation to probabilistic inference [28] widely used in sta-

tistics and machine learning. These local sampling algorithms generate new samples from the

previous one, creating sequential dependencies [29]. Local sampling algorithms have been

used to explain how people reason with probabilities [28], including the characteristic judg-

ment errors people make [30, 31], and have also been proposed in causal learning [32], bistable

perception [8], memory retrieval [33], and elsewhere [34].

Here, we postulate that local sampling underpins the attempt to generate sequences. This

would have implications for the domains in which random generation has been employed,

that is, for how we understand people’s behavior in adversarial situations, free will, and neuro-

diverse populations. In addition, random generation tasks could reveal undiscovered aspects

of the underlying local sampling mechanism, shedding light on how people perform a wide

range of tasks involving probabilistic inference.

Previous accounts of random generation have been constructed to deal with cases where

people must choose from a uniform distribution over a single dimension (e.g. numbers), often

with ordered items, and expect that people will draw samples uniformly: the network modula-

tion model achieves unpredictability by attempting to make each possible bigram equally

likely, while the schema model does so by changing which schemas are used based on unpre-

dictability of the sequence alone. Crucially, the local sampling account is much more general,

predicting that people will be able to draw samples from any distribution while matching their

probabilities, including non-uniform distributions or multivariate distributions. This leads to

a crucial differential prediction between our proposal and previous models, which center on

uniform distributions and which postulate that people strive for unpredictability only. In con-

trast, local sampling accounts assume that sampling will match the underlying distribution

density learned by the participant.

A second differential prediction is that, according to the schema account and the network

modulation model, many of the patterns that arise from human random generation do so

from the existence of habitual behaviors that must be inhibited. In case of the network modula-

tion model, the associations between items have different strengths, and the controller evens

these out to increase variability. In case of the schema account, transitions between items are

due to the application of well-learned transformations (schemas). These accounts have been

applied to tasks where the items to randomize were known beforehand, and so it is unclear

from these accounts how participants would perform when trying to randomize sets that have

recently been learned.

Here, we devised two novel random generation tasks exploring whether people can gener-

ate non-uniformly-distributed items, or items they have recently been learned. Importantly,
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we wanted to see whether people generated items in these novel tasks while still displaying the

typical departures from randomness that are often seen in the typical random generation para-

digm, where items are well-known and uniformly distributed, as that would point to the same

cognitive mechanism being used throughout. In Experiment 1, we asked participants to pro-

duce a sequence of random heights, and tested whether their sequences reflected the true,

approximately Gaussian, distribution of heights. In Experiment 2, we taught participants a set

of items configured in either a one-dimensional or a two-dimensional display, and tested

whether they could generate random items in these domains.

We found that people could generate random items in these new tasks, and that their

sequences exhibited the same systematic deviations from randomness found elsewhere in the

random generation literature [35], pointing to a common mechanism across all these tasks.

Crucially, as the local sampling account predicts, participants were sensitive to the distribu-

tional properties of the domain, being able to reproduce non-uniform distributions in their

samples. Finally, we observed a key systematic deviation from iid sampling—that people follow

the same trajectory for multiple trials over and above what would be expected from their mak-

ing small transitions only.

We computationally modeled these qualitative observations, identifying which forms of

local sampling explain human data best and contrasting them with Cooper’s [36] schema

model. Because no computational model is available for the network modulation account, we

do not include it in our model comparisons, but return to it in our discussion. We found that

data were most closely matched by a local sampling algorithm with “recycled momentum”, an

algorithm which has not previously been suggested to underlie human sampling. Our analysis

also shows that random generation tasks are useful for identifying subtle differences between

different candidate algorithms, opening the door to more such experiments in future.

Results

In Experiment 1, we tested whether participants could sample random items non-uniformly

while displaying the same deviations from iid. Participants produced a random sequence of

heights of either men or women in the United Kingdom. In one sequence, they sampled

heights as distributed according to a uniform distribution (Uniform condition); in the other

sequence, heights were distributed following their actual distribution (which is roughly Gauss-

ian [37], and so we term this the Gaussian condition). The order in which participants pro-

duced these sequences was counterbalanced. In Experiment 2, we tested whether participants

could sample from a set of novel items while displaying the same deviations from iid. Partici-

pants first learned a set of syllables arranged in either a single row (one-dimensional condi-

tion) or a grid (two-dimensional condition; see Fig 1B), then produced two random sequences

for the same display.

Deviations from iid sampling

To evaluate whether people deviated from iid sampling in the same way as in previous random

generation experiments, we evaluated several properties of the sequences commonly investi-

gated in past research [21] and whether these deviated from the properties expected from a

random sequence [38] (see Fig 1 for examples of the first three measures). We focused on devi-

ations from serial independence, as they can easily be applied to non-uniform distributions

and are more interpretable than compressibility measures, which can in turn inform building

better cognitive models. The indices were:

• Repetitions: The proportion of transitions where the new item was a repetition of the last.
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• Adjacencies: The proportion of transitions where the new item was one unit distance away to

the one prior. To ensure that this analysis reflected people’s transition patterns, we analyzed

this measure after removing all repeated items from the sequence. By applying this correction,

we avoided having values for this measure depend on how often repetitions occur (for exam-

ple, without this correction, Repetitions and Adjacencies would be negatively correlated).

• Turning Points: The proportion of transitions that did not follow the previous direction. In

previous random generation experiments using the number line, this has been defined as a

transition that begins a descending run after having followed an ascending run (e.g. “1, 4,

2”), or vice versa. For Experiment 2, we generalize this measure to describe turning points in

the spatial displays: we define it as a transition for which the absolute difference between the

current and previous direction is larger than 90 degrees (see Fig 1). Again, we analyzed this

measure after removing all repeated items from the sequence.

• Distances: The average Euclidean distance traveled in each transition. We analyzed this mea-

sure after removing all repeated items from the sequence.

In previous random generation literature, people generating numbers or letters have been

found to deviate from iid sampling in that they repeat items infrequently and transition

between items making small jumps and following the same trajectory for multiple utterances.

For this reason, if the same mechanism was used to generate items in these novel tasks, we

would expect higher Adjacencies and lower Distances, lower Repetitions, and lower Turning
Points, than iid sampling.

To compare participant’s values to those that would be expected from iid sampling, we

reshuffled each participant’s sequence 104 times and obtained the average value of each index

across reshuffled sequences. If an index required removal of repetitions, we first reshuffled the

original sequence with all items, and then removed items that were a repetition of the last in

the new reordering. We ran generalized linear mixed-effects models predicting the observed

values, using a logit link function for the first three measures and the identity link function for

Distances (see Eq 1). We included the iid expectation as an offset variable (coefficient set to 1),

so that the value of β0 represented the difference between observed and expected values. We

also included a random intercept per participant (ui).

ObservedValue ¼ b0 þ 1� ExpectedValueþ ui ð1Þ

Fig 1. Example measures. Examples of a repetition (blue), an adjacency (yellow) and a turning point (red) in (A) a sequence of normally-distributed

heights (in cm) in the Gaussian condition of Experiment 1, and (B) a sequence of syllables whose arrangement had recently been learned, for the two-

dimensional condition of Experiment 2. Woman’s outline image source: https://commons.wikimedia.org/wiki/File:Black_-_replace_this_image_

female.svg.

https://doi.org/10.1371/journal.pcbi.1011739.g001
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We also compared these results to a model that included a regressor on experimental condi-

tion (Eq 2), which allowed us to examine whether potential deviations from iid sampling

depended on the domain participants were producing from (β1).

ObservedValue ¼ b0 þ b1 � Conditionþ 1� iidValueþ ui ð2Þ

We only report condition differences where the conditions displayed different qualitative

trends, relegating other analyses to S2 Text.

Finally, because each participant produced two sequences, we added Order and Order ×
Condition terms to the model above to ensure that the above results did not depend on

whether the sequence was their first or their second. We found no qualitative differences due

to either term, and so we relegate the report on those analyses to S3 Text.

Experiment 1. We found that participants deviated from their reshuffled sequences in the

same systematic way as in previous random generation experiments. Compared to their

reshuffled sequences, participants’ values were lower for Repetitions (Observed = .015,

Expected = .043, Z = −2.61, p = .009, d = −0.67, BF10 = 4), Turning Points (Obs. = .47, Exp. =

.65, Z = −11.12, p< .001, d = −0.64, BF10 = 4.2 × 106) and Distances (Obs. = 9.98, Exp. = 18.42,

t(18.98) = −3.36, p = .003, d = −0.42, BF10 = 7), and higher for Adjacencies (Obs. = .22, Exp. =

.07, Z = 6.15, p< .001, d = 0.97, BF10 = 2.6 × 103).

Experiment 2. Likewise, in Experiment 2, participants deviated from their reshuffled

sequences in the same systematic way as in previous random generation experiments. Both in

the one-dimensional and two-dimensional conditions, participants had lower Repetitions
(Obs. = .04, Exp. = .15, Z = −9.55, p< .001, d = −1.31, BF10 = 4.6 × 107) and lower Turning
Points (Obs. = .66, Exp. = 0.70, Z = −3.70; p< .001, d = −0.17, BF10 = 5). In the one-dimen-

sional condition, they also had lower Distances (Obs. = 2.22, Exp. = 2.70, t(19.01) = −6.58, p<
.001, d = −0.32, BF10 = 703) and higher Adjacencies (Obs. = .46, Exp. = .29, Z = 6.27, p< .001,

d = 0.61, BF10 = 340) than iid, but these did not differ in the two-dimensional condition (Obs.

= 1.47, Exp. = 1.37, t(18.99) = 1.60, p = .13, d = 0.13, BF10 = 1/8; and Obs. = .58, Exp. = .55,

Z = 1.61, p = .11, d = 0.08, BF10 = 1/12; respectively).

Distributional sensitivity

A key distinction between the predictions of the schema and local sampling accounts is whether

people can generate random sequences that do not follow a uniform distribution. Comparing

aggregate and individual distributions corresponding to the random sequences, we found that,

in aggregate, Uniform and Gaussian conditions produced different item distributions (see Fig

2A). This difference was not merely due to data aggregation, since most of the individual partic-

ipants also produced different distributions in the two conditions (see Fig 2C). In order to

quantitatively study whether participants’ sequences resembled a uniform or a Gaussian distri-

bution more, we developed a new measure, which we term Shape, which was calculated as:

S ¼
1

N

XN

n¼1

lpdfGðxnÞ � lpdfUðxnÞ

where lpdfG(�) and lpdfU(�) are the log densities of the best fitting Gaussian and uniform distri-

bution respectively, xn is each item in the sequence, and N is the total length of the sequence.

Shape values are positive when a sequence is better described by a Gaussian distribution rather

than a uniform distribution, and vice versa. We did not remove repeated items before calculat-

ing this measure. Initially, we pre-registered that we would use a different measure: we would

fit sequences to a normal and a uniform distribution, and use BIC values to classify participants’

sequences. However, we decided against using this measure in favor of the Shapemeasure.
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When simulating normal and uniform sequences, we found that the Type II error rate was

three times smaller (0.47%) for the Shapemeasure than for our pre-registered measure (1.46%).

In addition, we found the Shapemeasure more interpretable, as results from different condi-

tions can be compared (e.g. Fig 2B).

We then ran a generalized linear mixed-effects model Shape = β0 + β1 × Distribution with a

random intercept per participant. The average value of Shape was 0.18 for the Gaussian condi-

tion (SD = 0.23) and −0.05 for the Uniform condition (SD = 0.21), which constitutes decisive

evidence for a difference among conditions (t(19.00) = 4.15, p< .001, d = 1.01, BF10 = 61). Sur-

prisingly, several participants uttered sequences that were best fit by a Gaussian distribution in

both conditions (i.e., that had a positive Shape value; see Fig 2B), but the vast majority of par-

ticipants had a higher Shape value when the target was Gaussian.

Turns at the center

In both experiments, we showed how little people changed direction compared to the iid
expectation, as reflected by their low values of Turning Points. Using all items to study this

Fig 2. Distributional Sensitivity Results. Distribution of items for participants in the Gaussian and Uniform conditions in Experiment 1. To ease

visualization, we normalized each participant’s values. (A) We calculated the average proportion of values of each participant in each of thirty bins, so

that each participant had equal weight in the resulting plot. Comparing the aggregate histograms shows that in the uniform condition participants had a

flatter distribution. (B) Shape measure of each participant for the Gaussian and Uniform conditions, with the dashed line representing equal values for

both conditions. Error bars are 95% confidence intervals (obtained via bootstrapping). Most participants had a more Gaussian sequence in the Gaussian

condition (participants below the dashed line). Although most participants lie in the second quadrant (shaded), meaning that they had a Gaussian

sequence in the Gaussian condition and a uniform sequence in the Uniform condition, several other participants lie in the first quadrant, meaning their

sequences were Gaussian in both conditions. (C) Histogram of each participant’s normalized values for each condition. For most participants, there’s a

clear difference between conditions, with the Gaussian values being more concentrated.

https://doi.org/10.1371/journal.pcbi.1011739.g002
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phenomenon, however, may not be fully indicative of people’s sampling process. This is

because participants transitioned between items in smaller jumps than iid, and so domain

boundaries and uneven mass may not have influenced their sequences as greatly as they do in

iid sampling. To illustrate this, in Fig 3 we plot the expected proportion of turns relative to the

location of the last item in a sequence, showing that making small jumps is sufficient for low

Turning Points: The middle row shows an iid sampler that was modified to never make greater

transitions than one standard deviation, and as a result had a Turning Points value of .52 on

average (as opposed to .66 for iid).

For these reasons, as a novel analysis, we focused our analysis on turns from the center of

the uttered domain, as it is in this region—where no concerns about mass or boundaries exist

—that the measure is most diagnostic. In central regions, standard local sampling models and

iid sampling predict that the proportion of direction changes will approximately be 50%.

In Experiment 1, we restricted our analyses to items where the last utterance was between

the 37.5 and 62.5 percentiles (the region of the distribution where 25% of the mass lies). This

represented 26.44% and 27.63% of the data for the Gaussian and uniform condition respec-

tively. In Experiment 2, to increase power, we limited our analysis to the three central hexes in

the one-dimensional condition (37.45% of data) but this was not possible in the two-dimen-

sional condition, where we limited our analysis to the central hex only (11.81% of data).

Fig 3. Theoretical and Empirical Turn Proportions. Proportion of turns relative to the location of the last-uttered item, for iid sampling (top row), a

“small-transitions” iid sampler that discards items more than 1 SD away from the last item (middle row), and the observed values from participants

(bottom row). While small Distances alone would lead to lower Turning Points values than iid sampling, the expected turns would be the same at the

center of the distribution (i.e. around 50%). We show that people follow their current trajectory over and above what would be expected from small

transitions only, going below the 50% threshold at the center of the distribution. Note: To be able to compare different participants in Experiment 1, we

standardized their sequences and calculated a Z score of the heights uttered. Then we divided these scores into 13 possible bins, with midpoints at −3,

−2.5, . . ., 0, . . ., 3, and counted the relative frequency of turns in each bin. We show bins -2 to 2 only to aid visualization. The shaded area represents the

region we defined as the center in each condition. Simulated plots were generated from 100 sequences each.

https://doi.org/10.1371/journal.pcbi.1011739.g003
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In both experiments we found that people show low Turning Points even in this limited

domain, but only in univariate domains: In Experiment 1, participants had lower Turning
Points than iid (Obs. = .41, Exp. = .51, Z = −3.37, p< .001, d = −0.34, BF10 = 4), with no differ-

ence between the two target distributions (Z = 2.31, p = .02, d = 0.20, BF10 = 1/3). In Experi-

ment 2, participant’s Turning Points differed between conditions (Z = 3.46, p = .001, d = 0.44,

BF10 = 4), with participants in the two-dimensional condition having Turning Points values

similar to iid (Obs. = .50, Exp. = .50, Z = 0.21, p = .84, d = 0.01, BF10 = 1/35) but with strong

evidence for smaller Turning Points values in the one-dimensional condition (Obs. = .41,

Exp. = .54, Z = −3.88, p< .001, d = −0.40, BF10 = 10).

Model comparison

Models

We compared the performance of Cooper’s schema model [36], an iid sampler, and six local

sampling algorithms. We used Cooper’s model as a stand-in for all schema models, as, to our

knowledge, it is the only computational implementation of a schema account, along with Sex-

ton and Cooper’s [39] model from which it derives. As for the local sampling algorithms, we

obtained them by choosing a simple algorithm (Metropolis-Hastings) and adding modifica-

tions that may approximate qualitative features of the data, as explained below (further details

about models can be found in S5 Text). This expands on the sets of sampling algorithms com-

pared in [27] and [40].

iid Sampling. This model draws independent, identically distributed random samples

according to the true distribution (i.e., the ideal baseline against which people are compared).

Schema. Cooper’s [36] schema model, derived from Sexton and Cooper’s [39] model,

generates a sequence by iteratively applying one of a set of pre-learned schemas to the previous

item, with some schemas being more likely than others, and with the active schema changing

over time. The schema model directly applies to Experiment 1, and for Experiment 2 we made

the assumption that schemas could be quickly generated for the novel representation on which

participants were trained. This is a generous assumption, as it is unlikely that schemas, which

are habitual in nature, could be developed for this task in such a short period of time. However,

we choose to make it in order to have a computational model other than local sampling model

with which to compare participants’ data with.

Local Sampling. We include six Markov Chain Monte Carlo (MCMC) algorithms in our

comparison; a family of algorithms that are widely used in statistics [41], and which have pre-

viously been compared to human data before [27, 30, 31, 33, 42]. They operate by creating a

chain of states that are only dependent on the previous one. In each iteration, an update to the

current state is proposed, with more likely states being favored (thus the chain approximating

a distribution).

The details of how state updates are proposed and accepted is what differentiates MCMC

algorithms. We use Metropolis-Hastings [43] as the base algorithm: in each iteration, it pro-

poses a new state by adding random noise, then it evaluates whether to transition to that pro-

posed state based on the likelihood ratio of the proposed and current locations, with a

preference for more likely locations.

We create the other five local sampling algorithms by adding qualitative features to Metrop-

olis-Hastings in a semi-factorial way (see Table 1):

• Multiple chains: This feature involves running multiple chains that swap places stochasti-

cally, with some chains transitioning to lower-likelihood states more frequently. This makes
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exploration more efficient in multimodal domains (as the sampler is more likely to traverse

low-likelihood valleys).

• Gradient-based proposals: This feature involves having samplers propose new states in a way

that utilizes the gradient of the posterior distribution, by simulating a physical system using

Hamiltonian dynamics, where the current state is the position and the momentum is drawn

randomly in every iteration [44]. This makes the sampler more efficient in multi-dimen-

sional domains.

• Recycled momentum: This feature changes how the momentum is chosen in each iteration of

gradient-based samplers, obtaining it by partially ‘recycling’ the previous momentum rather

than drawing it randomly. This feature can only be added if proposals are gradient-based

(hence the semi-factorial design), and can be used to make exploration more directed

(avoiding the back and forth of random walks).

We generated 105 sequences for each model, each time drawing parameters from a uniform

prior. For Experiment 1, where the true distribution is unknown, we estimated the best-fitting

Beta or Normal distribution for each participant; iid and local sampling models sampled from

a distribution defined by the average parameters of participants’ best fitting distributions. The

schema model uses the range of possible responses to sample, which we obtained by calculat-

ing the average minimum and maximum value of participants’ sequences.

To compare people’s sequences to the performance of these generative models, we used

Approximate Bayesian Computation (ABC, [45]), a simulation-based technique that can be

used to perform model comparison in cases where no likelihood function is available (see

Methods). We used the above summary measures to compare these models to people’s perfor-

mance, restricting Turning Points to the center of the distribution as defined above.

Because Cooper’s model assumes the distribution to be uniform, the author also uses mea-

sures of entropy in his analyses. To ensure that our comparison is fair, we also analyze the

sequences from uniform distributions using the entropy measures used in Cooper [36], but for

simplicity, and because results are qualitatively the same, we report those analyses in S7 Text.

Because the schema model cannot sample in two-dimensional domains, and because this con-

dition proved undiagnostic between local sampling features, we also relegate the discussion of

the different models in the two-dimensional condition of Experiment 2 to S6 Text.

Results

Experiment 1, Uniform condition. The average best fitting distribution was Beta(1.27,

1.43), and the average range of possible values was from 122 to 219 cm (97 possible values).

Table 1. Qualitative features of the local sampling algorithms compared.

Samplers

Qualitative Modifications (# Parameters) MH MC3 HMC REC* MCHMC* MCREC*
Multiple chains (3) ✘ ✔ ✘ ✘ ✔ ✔

Gradient-based proposals (1) ✘ ✘ ✔ ✔ ✔ ✔
Recycled momentum (1) ✘ ✘ ✘ ✔ ✘ ✔

Sampler abbreviations are MH: Metropolis-Hastings, MC3: Metropolis-coupled Markov Chain Monte Carlo, HMC: Hamiltonian Monte Carlo, REC: Recycled-

momentum Hamiltonian Monte Carlo. MCHMC and MCREC are the Metropolis-coupled versions of HMC and REC. Starred algorithms are those that have not been

compared to human data in past work. Which parameters govern a sampler’s behavior is determined by these qualitative features (see S5 Text for details).

https://doi.org/10.1371/journal.pcbi.1011739.t001
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Model recovery results were good, with the iid and schema models being correctly classified

99% and 95% of the time respectively, and with local sampling models being correctly classified

86% of the time. REC was misclassified as HMC and MCREC as MCHMC 21% and 27% of the

time respectively: This is to be expected somewhat, as the behavior of models with recycled

momentum becomes more similar to models without it the lower the amount of recycling is.

Local sampling algorithms approximated participants’ Shape best, while the schema model

generated consistently more uniformly-distributed sequences. All models produced too small

Adjacencies and too large Distances overall, and only the gradient-based samplers with multi-

ple chains (MCHMC and MCREC) and the schema model could approximate participants’

Distances in some simulations. All samplers but the schema model produced too large values

for Repetitions, and only the samplers with recycled momentum (REC and MCREC) and the

schema model could consistently match people’s low Turning Points (see Fig 4 for distribu-

tions of summary values).

Quantitatively, local sampling algorithms performed better than the iid (BF10 = 2.0 × 10105)

and schema (BF10 = 5.1 × 1030) models in this condition, and predicted 14 out of 20 partici-

pants best (the schema model predicted 6 participants best). Regarding local sampling qualita-

tive features, we found support for models running multiple chains (BF10 = 2.2 × 1031), having

gradient-based proposals (BF10 = 1.4 × 1043), and recycling their momentum (BF10 = 8.0 × 108;

see Fig 5, first column).

Experiment 1, Gaussian condition. Models had a Gaussian distribution with a mean of

176.4cm and a standard deviation of 12cm as the target (irrespective of whether the participant

sampled male or female heights), which were the average parameters of participants’ individual

best fitting distributions. The estimated range of responses (used by the schema model) was

smaller here, 83cm (from 131cm to 213cm). Model recovery results were good: the iid and

schema models were correctly categorized 99.9% of the time, and local samplers were correctly

categorized 78% of the time, with REC being misclassified as HMC and MCREC as MCHMC

19% and 21% of the time respectively.

All models except the schema model (see Fig 4) could replicate the fact that participants

reproduced the target distribution in the Gaussian condition (similar Shape values). Here,

local sampling algorithms matched participants’ Repetitions, but this was more due to an

increase in people’s frequencies than to a change in sampler behavior (on average, people’s

Repetitions were .07 in the Gaussian condition and .02 in the Uniform condition; Z = 10.05, p
< .001, d = 0.98, BF10 = 6.8 × 108). Again, only samplers with recycled momentum and the

schema model matched people’s low Turning Points.
Once more, local sampling algorithms replicated participants’ data better than the iid

(BF10 = 2.1 × 10105) and schema (BF10 = 3.7 × 10120) models, and predicted 15 participants

best (with iid and schema predicting 2 and 3 participants best respectively). As for qualitative

local sampling features, we found support for running multiple chains (1.3 × 1021), using gra-

dient-based proposals (3.9 × 1025) and recycling momentum (BF10 = 4.6 × 105; see Fig 5, sec-

ond column).

Experiment 2, One-dimensional condition. The average best fitting distribution was

Beta(1, 1) (i.e., a uniform distribution), and so this was the target distribution for both the iid
sampler and the local sampling algorithms. Model recovery results were poor for the iid model

and the local sampling models: while the prior error rate for schema models was 27%, the iid
model and local sampling models had error rates of 64% and 82%, with iid being misclassified

as a local sampling model 63% of the time, and local sampling models being misclassified as

another local sampling model 52% of the time.

All models were able to consistently replicate participants’ Shape values, but their values

for Adjacencies were too low and their values for Distances too large. Regarding Turning
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Points, only the local sampling algorithms that recycled their momentum (REC and

MCREC) and the schema model replicated the low number of Turning Points at the central

hex that people produced. Finally, only the schema model had as low Repetitions as partici-

pants (see Fig 4).

Fig 4. Model Summaries. Distribution of values for each of the computed measures for the eight candidate models, in

three tasks, with parameter values drawn from the prior. Further details are provided in the main text. Notice that in

the Gaussian condition of Experiment 1 the iid sampler had fewer repetitions than participants, yet in the main text we

reported that people had fewer repetitions than expected. This is because there we compared their performance to

reshuffled sequences, not to iid sampling from the distribution, and people have fewer unique items than iid sampling.

https://doi.org/10.1371/journal.pcbi.1011739.g004
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For these reasons, the schema model was closest to people’s performance in this condition,

predicting 19 out of 20 participants best (with iid predicting one participant best), and with a

BF10 = 9.2 × 1089 over the local sampling class of models and BF10 = 3.6 × 10136 over the iid
sampler. However, this is a generous interpretation of the schema model, assuming that people

are able to very quickly learn and apply schemas to novel representations.

Despite the schema model outperforming local sampling models in this condition, we still

compared the qualitative features of local sampling algorithms: we found evidence against

models running multiple chains (BF10 = 4.0 × 10−5), evidence for gradient-based proposals

(BF10 = 2.7 × 103), and evidence for recycled momentum (BF10 = 4.8 × 1016; see Fig 5, third

column), although the model recovery results for this condition reveal that local sampling

models were not particularly distinctive among themselves.

Combined Posterior Probabilities. Finally, we combined the obtained posterior proba-

bilities for the three conditions by multiplying them together, in order to carry out joint com-

parisons. When aggregating over conditions, we found decisive evidence for local sampling

algorithms over the schema model (BF10 = 2.9 × 1058). We also found decisive evidence for

local samplers running multiple chains (BF10 = 1.3 × 1048), using gradient-based proposals

(BF10 = 1.4 × 1085), and recycling their momentum (BF10 = 7.2 × 1026).

Comparing the individual models across all three conditions, we found that the best fitting

model was MCREC, with a BF10 = 7.2 × 1026 over the next best model, MCHMC, and a BF10 =

1.8 × 1059 over the schema model (see Table 2).

Discussion

In the current study, we expanded the random generation paradigm to ask participants to gen-

erate sequences from non-uniformly distributed domains and from recently-learned displays.

We found that participants displayed the same systematic deviations from iid sampling as

Fig 5. Posteriors per participant. Posteriors per participant in three tasks, with each column representing one participant. While in the one-

dimensional condition the schema model performed best, local sampling algorithms replicated participants’ data better in the Uniform and Gaussian

conditions. Within local sampling features, we found decisive evidence for samplers running multiple chains, using gradient-based proposals, and

recycling their momentum. Note: Conditions in Experiment 1 varied within participants, and so the nth bar in the Uniform condition is the same

participant as the nth bar in the Gaussian condition.

https://doi.org/10.1371/journal.pcbi.1011739.g005
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found in previous random generation experiments, pointing to a common mechanism under-

lying their performance across tasks. We also showed that participants could flexibly change

the distribution from which the generated samples, being able to generate the same items—

heights, in our case—in a uniform or Gaussian fashion depending on the given instructions.

Finally, we identified a key qualitative feature of people’s random generation, people’s ten-

dency to maintain their trajectory for many samples, and showed that this pattern does not

arise only due to the fact that people make small transitions. These findings directly contradict

schema accounts of human random generation [16, 36], which predict that people generate

random items by striving for serial independence only, and that the systematic deviations

from random sampling that people display arise from the presence of habitual responses (sche-

mas) and the attempt to suppress them. The schema account could be relaxed to allow for

quick learning of schemas (as we assumed when modeling the one-dimensional condition of

Experiment 2), or more sophisticated and task-specific schemas could be postulated for the

domains examined here. However, these hypothetical schema accounts would still not repro-

duce target distributions, and this account would need substantial modifications in order to do

so: for example, additional monitoring processes on the response histogram, not its unpredict-

ability, would need to be included, as well as a policy on how to trade off deviations from

unpredictability and from the optimal histogram.

Although no computational model was available for the network modulation account of

random number generation [23], the results here presented can qualitatively be compared to

what this account would predict. The network modulation account postulates that people gen-

erate random items by creating an associative network with each possible response as a node,

and with links representing their strength of association. While this network alone produces

habitual, stereotyped responses, a controller inhibits the strongest links to allow for more

unpredictable behavior.

If it were modified to have bidirectional links between items, with the strength of each

direction being proportional to the density ratio between the receiving node and the origin,

this account would be able to reproduce the fact that people can generate random items in a

Gaussian fashion. Reproducing the finding that people make fewer turns than expected would

require a very specific kind of interaction between the associative network and the controller:

because the associative network cannot produce fewer turns (as transitions only depend on the

current state and not the previous state), the controller would have to modify the network’s

links frequently and in a very distinct way in order to achieve this result. In addition, this

Table 2. Model Bayes Factors.

Model E1: Unif Condition E1: Gauss Condition E2: 1D Condition Combined Posteriors

MCREC 1.2 × 10106 1.2 × 10106 9.4 × 1042 1.4 × 10255

MCHMC 1.5 × 1097 2.7 × 10100 4.9 × 1030 2.0 × 10228

REC 5.4 × 1074 8.6 × 1084 2.4 × 1047 1.1 × 10207

Schema 4.0 × 1074 5.6 × 10−16 3.6 × 10136 8.0 × 10195

HMC 1.2 × 1059 9.2 × 1083 3.9 × 1025 4.2 × 10168

MC3 1.1 × 1054 6.9 × 1074 1.9 × 1014 1.4 × 10143

MH 7.5 × 10−15 6.1 × 1021 1.8 × 1027 8.2 × 1034

iid 1 1 1 1

Bayes Factors for the eight candidate models, in each separate task and considering the joint posterior probabilities. Models have been arranged in order of Bayes Factor

over iid when combining the three tasks, from largest to smallest. Metropolis-coupled Recycled-momentum Hamiltonian Monte Carlo (MCREC) is the best-fitting

model, but other local sampling algorithms are also competitive.

https://doi.org/10.1371/journal.pcbi.1011739.t002
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account would also not be able to explain the fact that the same deviations from iid sampling

appear when the items have recently been learned, as no habitual responses need to be inhib-

ited in this case.

Instead, data are consistent with the alternative we proposed: that people are not using a

surrogate process to sample items, but instead sampling from the domain directly using their

general cognitive ability to produce samples to perform inferences. We also quantitatively

modeled people’s behavior to the performance of a schema model [36], an iid sampler, and six

MCMC algorithms that varied in three qualitative features. In one dataset—the one-dimen-

sional condition of Experiment 2—the schema model performed best. This was due to it being

able to reproduce the low level of repetitions participants displayed in such a small range of

possible items, as such a range is closest to the tasks it was designed for. The fact that we

assumed that schemas could be applied to newly-learned items, however, should be noted

when interpreting these results. In the other three datasets, as well as when combining posteri-

ors across datasets, we found that local sampling algorithms were best at replicating human

performance, thus linking people’s behavior in random generation tasks to their performance

in other domains. We identified several features, such as recycling momentum, that had not

been previously compared to human data, showing that these features allowed local sampling

algorithms to better fit the data than the sampling algorithms that have performed best in past

comparisons (i.e., MC3 [27, 40]).

Recent research using process-tracing techniques suggests that how samples come to mind

and what the task at hand is are largely independent. For example, Mills and Phillips [46] ask

their participants to generate a list of animals as they come to mind, and find that doing so

with no other purpose, or in order to answer a specific question, does not change the types of

items participants produce. Similarly, Hardisty, Johnson and Weber [47] find that reporting

ideas that come to mind while making a decision makes no qualitative difference on the result-

ing choice, compared to a condition without thought listing.

If how samples are accrued is task-independent, then having identified these local sampling

features in the random generation task also has implications for how people engage in the other

tasks where local sampling algorithms have been applied: These sampling approaches have

been used to explain how people come up with ideas in a semantic fluency task [33], how they

estimate temporal duration [27], how they perceive visual stimuli with multiple interpretations

[8] and why they present multiple biases in how they reason with probabilities [28, 30, 31].

Although more and more research is being done comparing human performance to local

sampling algorithms, the set of available algorithms in the computer science literature is

incredibly vast, and efforts to identify the features of the human mental algorithm are in their

infancy. An exciting conclusion of the current work is that random generation tasks can dis-

tinguish fine-grained differences between algorithms, an endeavor that can be expanded on in

future work.

Limitations and Future Directions

Despite their success, local samplers displayed too high Repetitions in most conditions. Future

research may investigate additional qualitative features that can improve on this fact: for exam-

ple, ‘unadjusted’ algorithms [48], which do not evaluate the relative goodness of the proposed

and last state before transitioning, would repeat less by not rejecting proposals. Alternatively, a

post-sampling mechanism that explicitly eliminates some of the repetitions could be imple-

mented, akin to participants choosing not to utter their sampled item if it is identical to the

last; or sequences could be thinned to only report the nth sample, following research suggest-

ing that people use few, but more than one, samples when making probability judgments [6].
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An exciting feature of the current data is that people were able to replicate the target distri-

bution in Experiment 1, despite never being told participants what the true distribution of

heights in the United Kingdom is. Another avenue of future research, therefore, is to use ran-

dom generation as a belief elicitation method. In many domains, knowing what experts believe

is essential to build models of possible future outcomes [49], and in related work, we have

shown that random generation can be used to elicit beliefs as a complement to other more

established techniques [50]. This was true for additional distributions to the ones shown here:

distributions with high skewness (gross earnings from films) or where some values are

extremely unlikely (American football scores).

Another avenue of future research will be to apply local sampling models to previous ran-

dom generation results: most notably, random generation research on neurodivergent popula-

tions might benefit from a sampling interpretation. A vast literature has shown that different

neurodiverse populations show differences with neurotypical controls for some measures of

randomness but not others. For example, patients with schizophrenia and Parkinson’s disease

will display even higher rates of adjacent items than neurotypical controls but the same bias

against repeating items [51, 52], while patients with multiple sclerosis will make even fewer

turns than healthy controls [14]. Conversely, patients with unilateral frontal lobe lesions may

show a lesser bias against repeating items than neurotypical adults [53]. These differences can

be framed as differences in the qualitative features of the sampling model or as differences in

the parameter values used. For example, a local sampling model without multiple chains will

have more adjacent items, and increasing the degree of recycled momentum will lead to fewer

turns.

The models here presented might also need to be expanded to account for the many previ-

ous findings on how neurotypical adults perform the random generation task. For example,

many studies have manipulated how participants input their responses: rather than say items

out loud participants may press keys on a keyboard [54], select items with a mouse [18], or fill

squares in a grid [55], with differences in how random resulting sequences are. Analogously,

changing how the task of being random is described to participants may influence their

sequences (for example, asking them to simulate a coin toss mentally will lead to more random

sequences than explicitly asking for a random choice between heads and tails [56]). Partici-

pants are also more random when participating in a zero-sum game like matching pennies or

rock paper scissors [20, 57]. While it is possible that changes in the input mechanism may

influence the mental representation participants have of the task (in the same way that our spa-

tial training of syllables did), and that different instructions or a competitive setting may result

in differences in effort while doing the task, future work will be needed to incorporate these

findings into local sampling models.

It is possible, however, that some other findings in the random generation literature not

here explored would be already replicable by the local sampling models we use in this study:

previous research has shown that people are less random and say more adjacent items when

production rates are high [16, 21, 58], which could be achieved by a local sampling model that

makes smaller proposals between utterances. Similarly, if people have a second task to perform

while they’re generating a random sequence, they display even fewer repetitions and fewer

turning points [18], which a model with an increased degree of recycled momentum would

reproduce.

Conclusion

We devised novel tasks to study volitional random generation and found that people can gen-

erate random items from a wider range of domains than previously studied, while still
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displaying the characteristic deviations from iid sampling observed in previous tasks. We

showed that local sampling algorithms replicate people’s data more successfully, linking peo-

ple’s randomness in the random generation paradigm to behavioral noise in other tasks. We

were also able to identify several qualitative features that mirror people’s sequences, showing

that random generation can be a useful paradigm to reverse-engineer people’s sampling

algorithm.

Methods

Ethics statement

For both experiments, ethical approval was given by the Humanities and Social Sciences

Research Ethics Committee (HSSREC) at the University of Warwick. Written informed con-

sent was obtained from all participants.

Experiment 1

In this experiment (preregistration at https://osf.io/ux5tp), we asked participants to produce a

random sequence of people’s heights, either from a distribution in which all possible heights

are equally distributed, or from the actual distribution of heights in the United Kingdom

(which is roughly Gaussian for both adult men and adult women [37]). All participants gener-

ated heights from both distributions and the order of the distributions was counterbalanced.

Participants. Participants were recruited from the University of Warwick participant

pool. Being fluent in English was the only inclusion criterion. To ensure that participants

accessed the task with an appropriate microphone and stable internet connection, a pre-

screening task was run in which candidates recorded themselves reading a short text. Partici-

pants were paid £0.50 for completing the pre-screen task, irrespective of the outcome. The first

two authors independently rated whether the recording was audible, and the participants were

invited to perform the main task if at least one rater had deemed their recording to be valid.

Raters reached high agreement (87.2%, Cohen’s κ = .63). 85% of the participants who partici-

pated in the pre-screen were invited to the main experiment. We collected data from 21 partic-

ipants (Mean Age = 23.8, SD = 4.71; 14 male, 7 female). Following pre-registered criteria we

calculated a measure of how predictable sequences were (sequence determinism [59], see S9

Text]), and data from one participant (5%) was excluded from analysis (91% of their items

were one inch taller than the previous). Participants received payment of £2.5 plus a bonus of

up to £1.35 depending on performance, which we measured by how well they kept to the given

pace (mean total payment = £3.71). The experiment lasted approximately 20 minutes.

Design and Procedure. The experiment was conducted via video call. First, we intro-

duced participants to the task, and then they had to produce random heights from that distri-

bution for five minutes. In one condition, heights were introduced as distributed according to

a uniform distribution, whereas in the other condition, heights followed the true distribution

for adults in the UK for the target gender. Following [37], we consider the true distribution of

UK heights to be Gaussian for each gender, with a mean of 176.4cm and standard deviation of

7.02 for men and a mean of 163.6cm and a standard deviation of 6.03 for women (we did not

disclose this information to participants). We will refer to these conditions as Uniform and

Gaussian, respectively.

Participants produced heights at random in two blocks, one for each condition, in counter-

balanced order. The target gender was fixed for each participant throughout the experiment.

Participants could express heights in feet and inches or meters and centimeters, and we ana-

lyzed all randomness measures with the units they had used (For simplicity, we use centimeters

only throughout the current text).
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At the beginning of the experiment, participants were asked what they believed the height

of the shortest and tallest adult was in the UK (for the gender in their condition). Some partici-

pants spontaneously asked whether they should consider people with restricted growth, which

they were told not to. Participants estimated the minimum and maximum values reasonably

well, below and above the 1st and 99th percentiles of the true distribution: their median mini-

mum was 136 cm (SD = 17) for men and 125 cm for women (SD = 23.6), and their median

maximum was 217 cm for men (SD = 20.3) and 200 cm for women (SD = 35.9).

After these preliminary questions, participants were told a cover story matching the experi-

mental condition for that block. In the Gaussian condition, participants were asked to imagine

that a photographer wanted to take a picture representing the heights of adults (of the gender

they had been allocated), taking a picture of 10,000 people so that each possible height

appeared as often as it does in the population (as in the ‘living histograms’ of [60]). They were

told to imagine that each person who had been in the picture wrote their height on a piece of

paper, and that that paper was put in a bag. In the Uniform condition, they were told to imag-

ine that each possible height within the height boundaries they had previously specified had

been written on a piece of paper and that all papers were put in a bag.

After the learning stage, participants were asked to produce random heights, as if they were

drawing a random paper from the bag that had been described, saying the height out loud, put-

ting the paper back in the bag, and reshuffling the papers. They repeated this process for five

minutes. While saying items out loud, they were asked to look at the screen, where a dot

flashed at 30 times per minute, and were instructed to say a height every time the dot appeared.

The pace of production was chosen to be slower than in Experiment 1 because pilot testing

revealed that participants required more time to utter the multi-syllable heights.

After five minutes, participants were allowed a short rest, and then the Learning and Pro-

duction stages were repeated for the other condition. Participants produced both tasks at a

similar pace—the median temporal gap between successive items was 2.09s (SD = .27) and

2.02s (SD = .24) for the first and second sequence participants produced, a difference that was

significant but ambiguous (F(1, 19) = 5.55, p = .03, d = −0.53, BF10 = 1).

Experiment 2

Preregistered (https://osf.io/q3yrj) analyses for this experiment were reported in [61]. Analyses

here followed the analysis plan for Experiment 1.

In this experiment, participants first learned a display of syllables, arranged in either a one-

dimensional row or a two-dimensional configuration (see Fig 1), by moving virtually through

the display, revealing the syllable at their current location. Then, once they could reproduce

these spatial arrangements from memory, they were asked to utter a random sequence of sylla-

bles from that set.

Participants. We recruited 42 participants (Mean Age = 24.95, SD = 9.67; 14 male, 27

female, 1 non-binary) from the University of Warwick participant pool. The only inclusion

criterion was that participants had English as their first language. This was a stricter language

requirement than in Experiment 1, as we wanted to ensure that the syllables were meaningless

to participants. Two participants (5%) did not learn the syllables in the allocated time, and

were excluded from analysis following our preregistered criteria. Participants received a pay-

ment of £3.5 plus a bonus of up to £1.8, which depended on their performance in learning the

syllables (the average total payment was £4.64). The experiment lasted approximately 30

minutes.

Materials. We chose seven syllables of two letters each, all ending in a to ensure consistent

ease when uttering consecutive items. To select them, we considered both the frequencies of
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the syllables and syllable pairs in the Brown corpus [62], aiming for a homogeneous set. The

resulting selection was: ca, ha, la,ma, na, pa, and ta.

Design and Procedure. The experiment was conducted via video call. Participants first

learned the display they had been allocated (Learning Stage), then they uttered syllables at ran-

dom (Production Stage) for five minutes. The two blocks, learning the display and producing

a random sequence, were repeated after a short break (with the same display in both blocks).

The key experimental manipulation, which varied between participants, was whether the dis-

play of syllables they learned was the one- or two-dimensional arrangement. How the syllables

were arranged within the one- or two-dimensional display followed one of five possible config-

urations and was chosen randomly for each participant.

In the learning stage, participants were presented with a display consisting of seven hexa-

gons, arranged in either a single row or a two-dimensional grid, depending on the experimen-

tal condition. The hexagons were oriented so that the vertex was on top, and the two-

dimensional grid consisted of three rows of two, three, and two hexagons, respectively. Each

hexagon contained a hidden syllable, and participants’ task was to view and learn which sylla-

ble each hexagon displayed. To do so, they selected a hexagon whose syllable they wanted to

reveal, which made the previous syllable disappear, and the syllable in the chosen hexagon

appeared. They could freely choose any hexagon as their starting one, but subsequent choices

were constrained to adjacent hexagons only, which made the learning process akin to ‘spatially

exploring’ the display. To promote active learning, we included a delay of one second between

the disappearance of a syllable and the appearance of the next, and instructed participants to

announce which syllable they expected in the hexagon they had selected before it appeared.

As soon as participants felt confident that they had learned the display, their knowledge was

tested by asking them to name the syllables displayed on the seven hexagons in random order.

If participants answered all seven queries correctly in two consecutive tests, they proceeded to

the production stage, or else they returned to learn the display. Participants were excluded,

and the experiment was terminated if they failed the test four times, or if they exceeded the

maximum learning time of 10 minutes. Participants spent an average of 5.7 minutes (SD = 2.4)

learning the syllables, and no participant spent more than ten minutes. Two participants failed

the test four times and were excluded (on average, participants failed 0.65 times, SD = .86. The

two excluded participants’ average learning time was 9m and 54s).

In the production stage, participants uttered syllables from the set they had learned at ran-

dom for five minutes. To instruct participants to produce random sequences, we asked them

to imagine that they were drawing the syllables out of a hat each time, and putting the syllable

back before shuffling and drawing the next, following standard practice in previous random

generation experiments [16, 17]. During this stage, participants did not see the display they

had learned, but instead saw a dot flashing on screen, appearing at a pace of 80 times per min-

ute (once every 750ms). Participants produced a slightly lower pace than targeted (M = 71.21

syllables per minute, SD = 14.32).

After completing this stage, participants were allowed a short break. Then, both learning

and production stages were repeated, using the same display of syllables in the same arrange-

ment: participants had the opportunity to revise the display, and after testing they uttered sylla-

bles for another five minutes. The average time spent revising and testing was 104s (SD = 47s),

and the average number of failed attempts was 0.18 (SD = .38). Both were much lower than in

the initial learning stage (t(39) = −11.61, p< .001, BF10 = 1.2 × 107 and t(39) = −3.48, p = .001,

BF10 = 9, respectively), which suggests that participants had no difficulty remembering the dis-

play after their first random generation block. Participants were slower at producing items in

the first block they produced, with the median temporal gap between the items they uttered

being larger for the first block participants produced (median = 843ms, SD = 146) than for the
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second (median = 799ms, SD = 142). The evidence for this difference was ambiguous, with a

significant p-value but anecdotal Bayes factor (F(1, 39) = 11.97, p = .001, d = −.33, BF10 = 2.46).

All participants named each syllable at least once in each sequence.

Model comparison

Method. To compare people’s sequences to the performance of the several generative

models, we used Approximate Bayesian Computation (ABC [45]), a simulation-based tech-

nique that can be used to perform model comparison in cases where no likelihood function is

available. In our case (many approaches to ABC are available), we first generated vast volumes

of artificial data from the candidate models, sampling random values for their parameters from

their prior distributions; then obtained summary measures for the observed and synthetic data.

Finally, we used a machine learning tool for data classification, random forests, to compute the

posterior belief on each of the candidate models [63]. In short, a set of classification decision

trees is trained on the simulated data and learns to categorize it into the different candidate

models it originated from. Then, it classifies the observed data into which candidate model is

more likely to have produced it. To obtain the probability that the classification model makes

an error, a separate regression forest is trained on the same training data and the classification

error during training, and is applied to the observed data. This regression forest only computes

the probability that the classification label provided was incorrect, and so to obtain a full poste-

rior distribution over all candidate models, we ran forests recursively for each uttered

sequence, each time removing from the candidate models the model that had been considered

best in the previous iteration, until a posterior for each model was obtained. Unlike more tradi-

tional ABC approaches, the random-forest approach requires fewer simulations for each candi-

date model, and is more robust to the choice of summary statistics (for completeness, however,

we carry out a more typical ABC analysis in S8 Text, with similar results).

Here, we fit canonical distributions to participants’ data in each experiment, which would

be the target distributions the models would sample from. We then simulated 105 sequences of

400 items each for each candidate model and each condition, choosing the prior over the

parameters to be as uninformative as possible (we describe model parameters and their associ-

ated priors in S5 Text). Because the iid sampler and the local sampling algorithms sample in

continuous space, but participants produced whole numbers, we rounded the values the sam-

plers produced. To evaluate the resulting data, we used the summary statistics described in the

main text, choosing to focus on Turning Points from the central region of the distribution.

Because the schema model can only sample from univariate distributions, we do not consider

the two-dimensional condition of Experiment 2 in the main text, but we did fit local sampling

models there too, and we describe those results in the S6 Text (this subset of the data, however,

yielded uninformative results, with all local sampling algorithms and the iid sampler perform-

ing equally well).

In order to compare the three higher-level approaches to random generation (iid sampling,

local sampling, and schema accounts), we carried out Bayesian Model Averaging [64] to com-

pute Bayes factors (i.e., the ratio of the average posteriors of each candidate class). We also

used these to compare qualitative features of the candidate local sampling models, comparing

models that were ‘matched’: we only included models to our comparisons that had an identical

equivalent in the other side of the comparison but for the factor of interest (e.g., to compute

Bayes factors of inclusion for gradient-based proposals, the average of the posteriors for HMC

and MCHMC was compared to that of MH and MC3. Because no model exists that has recy-

cled momentum but not gradient-based proposals, REC was not added to either side of the

comparison; see Table 1).
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