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Abstract: Wildfires are becoming more frequent due to the global climate change. Large amounts of
greenhouse gases emitted by wildfires can lead to increases in extreme climate events. Accurately
estimating the greenhouse gas carbon dioxide (CO2) emissions from wildfires is important for
mitigation of climate change. In this paper, we develop a novel method to estimate wildfire CO2

emissions from the relationship between local CO2 emissions and XCO2 anomalies. Our method
uses the WRF-Chem assimilation system from OCO-2 XCO2 retrievals which coupled with Data
Assimilation Research Testbed (DART). To validate our results, we conducted three experiments
evaluating the wildfire CO2 emissions over the conterminous United States. The four-month average
wildfire emissions from July to October in 2015∼2018 were estimated at 4.408 Tg C, 1.784 Tg C,
1.514 Tg C and 2.873 Tg C, respectively. Compared to the average of established inventories CT2019B,
FINNv1.5 and GFASv1.2 fire emissions, our estimates fall within one standard deviation, except
for 2017 due to lacking of OCO-2 XCO2 retrievals. These results suggest that the regional carbon
assimilation system, such as WRF-Chem/DART, using OCO-2 XCO2 retrievals has a great potential
for accurately tracking regional wildfire emissions.

Keywords: wildfire; CO2 emissions; WRF-Chem/DART; assimilation system; the conterminous
United States

1. Introduction

Wildfires occurring either naturally or ignited by humans are an important component
of the global carbon cycle. It emits a variety of greenhouse, reactive gases and aerosols
to the atmosphere, including carbon dioxide (CO2), carbon monoxide (CO), oxides of
nitrogen (NOx), methane (CH4), volatile and semivolatile organic compounds (VOC and
SVOC), particulate matter (PM), ammonia (NH3), sulfur dioxide (SO2) and so on. This
not only cause the immediate release of carbon stored in vegetation into the atmosphere,
but also induce a long-term shift in the balance between the carbon sequestration by
plants and carbon liberation through decomposition of dead biomass. This will affect the
atmospheric composition and thermal balance in both the global and regional scales [1–6].
In recent decades, varying degrees of wildfires happened now and then in Australia,
California, Siberia and Indonesia. These wildfires had a significant impact on the ecological
environment, human health, and economic life in these regions [7–10]. Wang et al. [11] use
a combination of physical, epidemiological and economic models to estimate the economic
impacts of California wildfires in 2018. The estimation result shows that the wildfire
damages in 2018 totaled $148.5 (126.1–192.9) billion (roughly 1.5% of California’s annual
gross domestic product).

Wildfires affect climate through direct carbon dioxide CO2 emissions and multiple
postfire carbon source and sink pathways. Globally, since 2000, CO2 emissions from fossil
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fuels and land-use change averaged 9 billion metric tons of carbon (Gt C) per year, whereas
wildfire CO2 emissions were approximately 2 Gt C per year [12]. Over the past few decades,
the increasing frequency of wildfires is a concerning trend that is linked to the global
warming [13]. In the conterminous United States, the increase in burned area from wildfires
has roughly quadrupled. This trend is concerning because wildfires can contribute to the
accumulation of greenhouse gases in the atmosphere, which in turn leads to further global
warming. Many studies have analyzed various aspects of the atmospheric impacts of
wildfires, ranging from the more general such as air quality issue and emissions assessment,
to more specific or local including particulate matter emissions, transport, radiative effects
and so on [14]. Miranda et al. [15] estimated CO2 emissions due to wildfires and found
that in years when the burnt area exceeds 100000ha, this contribution could reach 7% of the
total Portuguese CO2 emissions. So, it is important to study the variation of wildfire CO2
emissions on both global and regional scales which will improve our understanding of the
damage from wildfires. The analysis of wildfires CO2 emissions can provide a valuable
foundation for decision-makers to formulate relevant policies.

The variety of satellites and observation data provide conveniences for the estimation
of the wildfire CO2 emissions scale and the real-time monitoring of fire points [16–19].
Different research groups produced the wildfire CO2 emissions dataset such as Global
Fire Emission Database (GFED) [20,21], Fire INventory from NCAR (FINN) [22], Global
Fire Assimilation System (GFAS) [23] by using the burning area (BA) and fire radiative
power (FRP). Where the FRP observed by satellite data such as Moderate Resolution
Imaging Spectroradiometer (MODIS). Konovalov et al. [24] propose a method to estimate
the wildfires CO2 emissions in Siberia. This method use Infrared Atmospheric Sounding
Interferometer (IASI) carbon monoxide (CO) retrievals and MODIS Aerosol Optical Depth
(AOD) combined with outputs from the CHIMERE mesoscale chemistry-transport model.
The study found the “top-down” estimates for the total annual biomass burning CO2
emissions in the period from 2007 to 2011 in Siberia are by factors of 2.5 and 1.8 larger
than the respective bottom-up estimates, such as GFED3.1 and GFASv1.0 global emission
inventories. Heymann et al. [25] estimate the Indonesian fire CO2 emissions by using the
column-averaged dry air mole fraction of CO2 (XCO2) which derived from measurements
of the Orbiting Carbon Observatory-2 (OCO-2) satellite mission. The estimated wildfire
CO2 emissions is 748 ± 209 Mt CO2, which is about 30% lower than GFEDv4s and GFASv1.2.
Guo et al. [26,27] successively evaluated the CO2 emissions from the 2010 fires in western
Russia by using Greenhouse Gases Observing Satellite (GOSAT) data, from the 2015 fires
in Siberia by using OCO-2 data. Wang et al. [28] studies the 2019–2020 Australian mega-
bushfires based on OCO-2 XCO2 retrievals. Find the smoke from wildfires can greatly
obscure satellite observations, making the available XCO2 mainly locate over outer fringes
of plumes downwind of the major mega-bushfires in eastern Australia in three orbit
observations during November-December 2019 with their enhancements of approximately
1.5 ppm. By using an atmospheric transport model, the fire-induced CO2 enhancement
is further confirmed. The simulation experiment also suggests that the sensitivity of the
downwind maximum XCO2 enhancement is 0.41 ± 0.04 ppm for 1 Tg C d−1 fire emissions.

In this paper, we assess the wildfire CO2 emissions in conterminous United States from
July to October in 2015∼2018 with the regional CO2 assimilation inversion system [29]. It
can improve the regional CO2 concentrations by assimilating OCO-2 XCO2 retrievals with
WRF-Chem coupled with extending the DART [30]. We evaluate our results with CT2019B,
FINNv1.5 and GFASv1.2 wildfire emissions databases.

The paper is organized as follows, the detail description of the estimate method and
materials are presented in the Section 2; Results of the experiments and discussion are
given in Section 3, followed by the conclusion in Section 4.
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2. Materials and Methods
2.1. A Regional CO2 Transport Model

WRF-Chem model version 4.4 was used as regional CO2 transport model. The study
area is the conterminous United States, the time range is from July to October in 2015∼2018.
The physics and chemistry configurations of WRF-ChemV4.4 is showed in Table 1 [29].

Table 1. Physics and chemistry configurations of the WRF-Chem V4.4.

Options Configurations

WRF_Core ARW
Domain center 34.939◦N–96.275◦W
Grid resolution 50 km

nx,ny,nz 103,82,45
Interval seconds 21,600 s/6 h

Time steps 240 s
Start date 2015∼01-07-2018 00:00:00
End date 2015∼01-11-2018 00:00:00

Microphysics process WSM 5-class simple ice scheme [31]
Cumulus parameterization Kain-Fritsch scheme [32]

Longwave atmospheric radiation RRTM scheme [33]
Shortwave atmospheric radiation Dudhia scheme [34]
Planetary boundary layer scheme MYNN 2.5 level TKE [35]

Surface layer scheme MYNN [36]
Land surface scheme Unified Noah Land surface model

Chemistry option chem_opt=16 (CO2 only)

The WRF-Chem model use ds083.2 data (DOI: 10.5065/D6M043C6) as the initial
meteorological dataset, which is 1◦ × 1◦ spatial resolution and 6-hourly temporal resolution
from National Centers for Environmental Prediction (NCEP) FNL Operational Model
Global Tropospheric Analyses, continuing from July 1999.

The initial and boundary conditions of CO2 concentrations on WRF-Chem model
are interpolated from CT2019B CO2 total mole fractions products which is 3◦ × 2◦ spatial
resolution and three-hourly temporal resolution. The prior CO2 flux is CT2019B flux which
is 1◦ × 1◦ spatial resolution and three-hourly temporal resolution, including anthropogenic
emissions, fire emissions, biogenic fluxes, and ocean fluxes.

2.2. CO2 Concentration Assimilation System

The study is based on the regional CO2 concentration assimilation system with OCO-2
XCO2 retrievals by extending DART [29,30].

The XCO2 retrievals from nadir observation mode with good quality according to the
“xco2_quality_flag” are selected from the OCO-2 Level2 (L2) Lite data product V10 and its
preprocessing method is as below [29]:

˜OCO2XCO2 =
n

∑
i=1

OCO2XCO2i σ
−2
OCO2i

/
n

∑
i=1

σ−2
OCO2i

(1)

σ̃OCO2 = 1/

√
N−1

n

∑
i=1

σ−2
OCO2i

(2)

where ˜OCO2XCO2 and σ̃OCO2 denotes the representative mean XCO2 value and its uncer-
tainty of a model grid cell respectively.

According to the strategy of Crowell et al. [37], the observation operator H was
implemented to link the OCO-2 10 s mean XCO2 retrievals to the CO2 concentration
forecast by WRF-Chem model, which is defined as:
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XCOm
2 = XCOa

2 + ∑
j

hjaj(COm
2 − COa

2) (3)

where XCOa
2, hj, aj and COa

2 are the prior XCO2 value, the pressure weighting function,
the column averaging kernel and the prior CO2 concentration profile used by OCO-2
XCO2 retrieval process respectively. COm

2 is the optimal CO2 concentration profile which
interpolated to the pressure levels of OCO-2 XCO2 retrieval from WRF-Chem model. XCOm

2
is the column-average CO2 concentration of the WRF-Chem forecasts which converted by
the operator H.

The assimilation system used Ensemble Adjustment Kalman Filter (EAKF) [38] as
the data assimilation approach, and advanced by WRF-Chem to next assimilation cycle.
Let xinit

k , x f
k , xa

k represent the initial states of the prior CO2 concentration distribution, the
forecast states advanced by WRF-Chem starting from xinit

k and the analysis states of the
k-th ensemble member of each assimilation cycle, respectively. The xinit

k was generated in
the same way as that of Mizzi et al. [39] by imposing a Gaussian distribution around mean
values of CO2 concentrations calculated from CT2019B as the initial background with a
5% standard deviation about the mean. The forecast states x f

k were transformed into the

observation space by the observation operator H, i.e., y f
m,k = H(x f

k ), where the subscript m

means “from model”. The analysis result of each y f
m,k was calculated as:

ya
m,k =


√√√√ σ̃OCO2

2

σ̃OCO2
2
+ σ̄

f 2

m

[y f
m,k − ȳ f

m

]
+

[
ȳ f

m

σ̄
f 2

m

+
ÕCO2XCO2

σ̃OCO2
2

][
1

σ̄
f 2

m

+
1

σ̃OCO2
2

]−1

(4)

where ÕCO2XCO2 is the representative mean XCO2 values of a model grid cell with un-

certainty σ̃OCO2 calculated from the OCO-2 retrievals by Equations (1) and (2). ȳ f
m is the

ensemble forecast mean with ensemble spread σ̄
f 2

m in the observation space. At the end of
each assimilation cycle, the analysis state of the k-th ensemble member was updated as:

xa
k = x f

k + α
σ(x f , y f

m)

σ̄
f 2

m

(ya
m,k − y f

m,k) (5)

where σ(x f , y f
m) is the covariance of x f and y f

m across the ensemble. α is a covariance
localization function to compensate the sampling error due to small ensemble size [40].

2.3. Wildfire Emissions Estimate Model

Hakkarainen et al. [41,42] indicates a positive correlation between XCO2 anomalies
and CO2 emission inventories in regional-scale, which can be defined as:

∆F = λ ∗ ∆XCO2 (6)

where ∆F is CO2 emissions, ∆XCO2 is the XCO2 anomalies corresponding to CO2 emissions,
λ is the positive correlation coefficient.

We propose a model to estimate the wildfire CO2 emissions in the conterminous United
States. First we design two simulation experiments to compute the positive correlation
coefficient λ. The difference between two simulation experiments is whether to add the
wildfire emissions to the prior flux or not. Where the ∆XCO2 is the XCO2 anomalies
derived from the two simulation experiments results. ∆F is the wildfire CO2 emissions.
Then we design one CO2 assimilation experiment to estimate the wildfire emissions in
conterminous United States with the known coefficient λ and XCO2 anomalies. So, we
obtain an equation about CO2 emissions increment and XCO2 increment in the wildfire
area, which defined as follows:
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∆Flux1
∆XCO2_1

=
∆Flux2

∆XCO2_2
(7)

where ∆Flux1 and ∆Flux2 represent two CO2 flux increment respectively, the ∆XCO2_1
and ∆XCO2_2 are the XCO2 increment corresponding to the above two CO2 flux increment.

2.4. Wildfire Emissions of CT2019B

By analyzing the CT2019B monthly total CO2 fluxes, anthropogenic CO2 emissions,
biological CO2 fluxes, fire CO2 emissions and ocean CO2 fluxes from 2000 to 2018 in
conterminous United States, we found the monthly mean anthropogenic CO2 emissions
does not change significantly with time, while the monthly mean biogenic CO2 fluxes has
obvious seasonal and inter-annual changes.

In the total CO2 fluxes, the proportion of wildfire CO2 emissions is less than 7%.
Large-scale wildfires typically occurred in summer, particularly in August and September,
and this trend has been increasing year by year from 2000 to 2018. As Figure 1 shows,
in the year 2015∼2018, the wildfires occurred in July and August of each year mainly at
northwest area of the conterminous United States, and the wildfire in August is larger than
July. While in September and October the wildfire also appeared at southeast area of the
conterminous United States.

Figure 1. The spatial distribution of wildfire CO2 emissions in July to October in conterminous
United States during 2015 to 2018.

2.5. Experiment Design

In this paper, we design three groups of comparative experiments. Two CO2 concen-
tration simulation experiments named as “SIM_EXP1” and “SIM_EXP2”, one CO2 concen-
tration assimilate experiment with the OCO-2 XCO2 retrievals named as “DA_EXP3”. The
configurations of the three experiments are shown in Table 2.
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Table 2. The configurations of the three experiments.

Experiment
Name

Initial and
Boundary Prior Flux Assimilate or

Not
Experiment

Time

SIM_EXP1

CT2019B CO2
total mole
fractions
products

CT2019B
optimized fluxes

with fire
emissions

NO July to October
of 2015∼2018

SIM_EXP2

CT2019B CO2
total mole
fractions
products

CT2019B
optimized fluxes

without fire
emissions

NO July to October
of 2015∼2018

DA_EXP3

CT2019B CO2
total mole
fractions
products

CT2019B
optimized fluxes

without fire
emissions

YES July to October
of 2015∼2018

The two simulation experiments SIM_EXP1, SIM_EXP2 were designed to demonstrate
the significant impact of wildfire emissions on XCO2. For SIM_EXP1, the initial and
boundary conditions of the WRF-Chem were interpolated from CT2019B CO2 total mole
fractions products, the prior CO2 flux was interpolated from CT2019B total fluxes which
include anthropogenic emissions, fire emissions, biogenic fluxes, and ocean fluxes. For
SIM_EXP2, the initial and boundary conditions were the same as SIM_EXP1, but the prior
CO2 fluxes only include anthropogenic emissions, biogenic fluxes and ocean fluxes.

For DA_EXP3 experiment, we optimizing the CO2 concentrations further by assimilat-
ing with OCO-2 XCO2 retrievals [30,38,43]. The prior fluxes are same as SIM_EXP2. The
initial and boundary conditions was interpolated from CT2019B CO2 total mole fractions
products, and then adding a Gaussian perturbation which the average value is 0, standard
deviation is 2% to each grid point of each ensemble. In this CO2 assimilation experiment,
the size of ensemble members is set to 20, adopting Three-dimensional Gaspari-Cohn
localization function [44] to compensate for sampling errors caused by the finite ensemble
number. Where the influence radius in the horizontal of Three-dimensional Gaspari-Cohn
localization function is 0.1 radians. In vertical, the principle of localization function is same
as Kang et al. [45], which has a larger impact coefficient in lower troposphere (the sigma
level of OCO-2 is 0.947) and descending to both sides. Simultaneously, we discard the
observations that is 3 times larger than the prior value by implementing the exception
value detection.

2.6. Wildfire Emissions Estimate Method

According to the three experiments results, the Equation (7) can be rewrite as:

∆Fexp1−exp2

Xexp1 − Xexp2
=

∆Fwild f ire

Xexp3 − Xexp2
(8)

where the Xexp1, Xexp2 and Xexp3 are the mean XCO2 of SIM_EXP1, SIM_EXP2 and DA_EXP3.
∆Fexp1−exp2 represents the CT2019B wildfire CO2 emissions between SIM_EXP1 and SIM_EXP2,
∆Fwild f ire is the estimated wildfire emissions in conterminous United States from our study.

To estimate the wildfire emissions accurately, we add the monthly ratio of wildfire
emissions with OCO-2 XCO2 retrievals days as a variable. Let i represent one month,
Di

wild f ire represent the days of wildfire occurs in one month, Di
total represent total days of

one month. Then the monthly ratio ρi defined as:

ρi =
Di

wild f ire

Di
total

(9)
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The estimated wildfire CO2 emissions ∆Fi
wild f ire can be computed as:

∆XCO2_1i = Xi
exp1 − Xi

exp2 (10)

∆XCO2_2i = Xi
exp3 − Xi

exp2 (11)

∆Fi
wild f ire = ∆Fi

exp1−exp2 ×
∆XCO2_2i

∆XCO2_1i × ρi (12)

2.7. Evaluation Data

Three different types of wildfire CO2 emissions were used to evaluate the wildfire CO2
emissions in conterminous United States which estimated by our method. Including CT2019B
fire emissions, CAMS GFASv1.2 wildfire CO2 emissions datasets (https://ads.atmosphere.
copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=overview, accessed
on 15 November 2023) [46,47] with 0.1◦ × 0.1◦ spatial resolution and FINNv1.5 fire emis-
sions (https://www.acom.ucar.edu/Data/fire/, accessed on 15 November 2023) [22].

In our study, we also consider the influence of OCO-2 XCO2 retrievals in wildfire
areas. Before evaluating the wildfire CO2 emissions based on the Equations (10)–(12), it is
necessary to select the days with sufficient OCO-2 XCO2 retrievals in wildfire areas. Table 3
shows the selected days in conterminous United States from July to October of 2015∼2018.
As there are no OCO-2 XCO2 retrievals in August 2017, the number of days that can be
selected is zero.

Table 3. The OCO-2 XCO2 observations days in wildfire areas of the conterminous United States
from July to October of 2015∼2018.

Year July August September October

2015 9 8 8 6
2016 6 7 10 10
2017 12 0 3 6
2018 10 14 18 18

The CT2019B CO2 concentrations and NCEP Reanalysis2 Gaussian Grid 10 m wind
data were used to analysis the variation of wildfire CO2 emissions in the conterminous
United States.

2.8. Evaluation Metrics

Our experiments results were evaluated by Standard Deviation (STDE), defined as:

STDE =

√
∑n

i=1( fi − f̄ )2

n − 1
(13)

where n is the 3, means the three kinds of wildfire emissions as mentioned in Section 2.7. fi
represent one of the three types of wildfire emissions. f̄ is the averaged wildfire emissions
of CT2019B, GFASv1.2, FINNv1.5.

3. Results and Discussion
3.1. XCO2 Experiments Results

Table 4 shows the monthly average XCO2 of SIM_EXP1, SIM_EXP2, DA_EXP3 and
CT2019B from July to October of 2015∼2018 in conterminous United States, with the
CT2019B XCO2 added as reference. As the Table 4 shows, the average annual increase in
XCO2 is approximately 2.57 ppm for the three experiments. The monthly averaged XCO2

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=overview
https://www.acom.ucar.edu/Data/fire/
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exhibits an uptrend from August to October every year, especially in October, where XCO2
increases by 1.47 ppm, 1.27 ppm, 1.45 ppm, 1.11 ppm from 2015 to 2018 respectively.

Due to the absence of wildfire emissions in the prior fluxes of WRF-ChemV4.4 model,
the monthly averaged XCO2 of SIM_EXP2 is 0.02ppm lower than SIM_EXP1 in conter-
minous United States. The monthly averaged XCO2 of DA_EXP3 is closer to CT2019B
than SIM_EXP1 and SIM_EXP2, indicating the assimilation of OCO-2 XCO2 retrievals
can optimize the XCO2 distribution and make it more consistent with the CarbonTracker
products.

Table 4. The monthly average XCO2 of SIM_EXP1, SIM_EXP2, DA_EXP3 and CT2019B from July to
October of 2015∼2018 in conterminous United States.

Year Month
SIM_EXP1

(ppm)
SIM_EXP2

(ppm)
DA_EXP3

(ppm)
CT2019B

(ppm)

2015

July 398.60 398.58 398.22 398.29
August 397.13 397.09 396.59 396.65

September 397.67 397.65 397.61 397.36
October 399.19 399.18 398.98 398.81

2016

July 402.06 402.06 401.41 401.86
August 401.13 401.12 400.49 400.51

September 401.22 401.21 401.12 400.77
October 402.45 402.45 402.46 402.07

2017

July 404.77 404.76 403.69 404.21
August 402.49 402.47 401.52 402.05

September 402.97 402.95 403.01 402.45
October 404.43 404.43 404.41 404.01

2018

July 405.83 405.82 405.39 405.61
August 405.12 405.07 404.67 404.80

September 405.68 405.66 405.56 405.21
October 406.74 406.73 406.75 406.28

3.2. Wildfire CO2 Emissions Experiments Results

Due to satellite transit time, clouds and aerosols, OCO-2 satellite only has several
days in which it can detect wildfire in conterminous United States from July to October. To
accurately estimate monthly wildfire CO2 emissions, the days we selected are those with
OCO-2 XCO2 retrievals coupled with wildfires.

Figure 2 shows the spatial distribution of monthly mean CT2019B wildfire CO2 emis-
sions with 10m wind speed and wind direction in upper panel, the monthly mean ∆XCO2
between DA_EXP3 and SIM_EXP2 with sufficient OCO-2 XCO2 retrievals days in lower
panel, the time range is from July to October in 2015∼2018.

As the Figure 2 shows, compared with SIM_EXP2, after assimilating with OCO-2
XCO2 retrievals, the XCO2 increment of DA_EXP3 mainly locate in or around the wildfire
areas. Taking into account the distribution and numeric value of the OCO-2 XCO2 retrievals,
the range of wildfire occurrences in the conterminous United States, the 10m wind speed
and wind direction in different months and the CO2 assimilate system, the XCO2 increment
is primarily located in the north and east, and SIM_EXP2 having a larger XCO2 than
DA_EXP3 in the other regions in July and August. In September and October, the XCO2
increment mainly locate in northwest and southeast regions where the wildfire occurs, and
the negative value of ∆XCO2 is less than July and August.
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Figure 2. The spatial distribution of monthly mean wildfire CO2 emissions from CT2019B with the
10m wind speed and wind direction in the conterminous United States (upper panel), the monthly
mean ∆XCO2 between DA_EXP3 and SIM_EXP2 with enough OCO-2 XCO2 observations in the
conterminous United States (lower panel), the time range is from July to October in 2015∼2018.
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Figure 3 shows the comparison between mean wildfire CO2 emissions of CT2019B,
FINNv1.5, GFASv1.2 and estimates in our study. The monthly mean wildfire emissions of
CT2019B, FINNv1.5, GFASv1.2 and our study are presented in Table 5. In our study, the four-
month mean wildfire emissions in 2015 are 4.408 Tg C (1 Tg C = 1012 g C), which is 26.34%
higher than CT2019B, 33.63% higher than FINNv1.5 and 24.47% lower than GFASv1.2.
These values fall within one standard deviation of the average values of CT2019B, FINNv1.5
and GFASv1.2 (4.208 ±2.082 Tg C).

The four-month mean wildfire emissions in 2016 is 1.784 Tg C, is 34.05% larger than
CT2019B, 32.26% lower than FINNv1.5 and 55.45% lower than GFASv1.2. While in 2017,
because of the lack of OCO-2 observation data in August and September, the evaluation of
wildfire emissions with our study is inaccurate, the four-month mean wildfire emissions of
our study have a large gap with the other three emissions databases. And the four-month
mean wildfire emissions in 2018 is 2.873 Tg C, is 53.72% larger than CT2019B, 35.29% lower
than FINNv1.5 and 44.12% lower than GFASv1.2, which also falls within one standard
deviation of the average of other three wildfire emissions.

The differences in wildfire CO2 emissions between different data sources are significant
for each month. For instance, in August 2015, the wildfire CO2 emissions of GFASv1.2 are
18.391 Tg C, where those of FINNv1.5 are 7.238 Tg C. In October 2015, the wildfire CO2
emissions in our study are 4.263 Tg C, higher than all the others. The similar phenomenon
also occurred in 2016∼2018, and the gap may be caused by the different estimation methods,
model errors, different CO2 satellites observation data and so on. For example, GFAS use
the top-down approach to calculate the biomass burning emissions by assimilating FRP
observations from the MODIS instruments onboard the Terra and Aqua satellites. It corrects
the gaps in the observations, considers the omission errors due to the undetected small
fires, using atmospheric reactive gas simulations to produce the real time daily, 0.5◦ × 0.5◦

grid, global wildfire emissions. But the occurrence of a plume may be wrongly predicted
or not predicted at all in situations with extreme variability in the fire activity. FINN use
the bottom-up approach to provide daily, 1 km resolution, global estimates of emissions
from open fires based on the Terra and Aqua from MODIS instruments satellite detection
of hot spots. This method mainly uses the fire hot spots to estimate the wildfire emissions,
ignoring the impact of smaller fires on CO2 emissions. And the use of assumed area burned,
land cover maps, biomass consumption estimates, and emission factors all will introduce
error into the model estimates. This leads to highly underestimation of the fire emissions in
global, then causing the uncertainties and the large fluctuations in regional. CarbonTracker
provides 3-hourly, 1◦ × 1◦ grid, global estimates of surface-atmosphere CO2 fluxes. For
fire emissions, it uses GFED as one of the fire modules to estimate biomass burning. The
burned area is based on MODIS satellite observations of fire counts, together with detailed
vegetation cover information and a set of vegetation specific scaling factors. Based on the
burned area estimate, the seasonally changing vegetation and soil biomass stocks in the
CASA model are combusted and converted to atmospheric trace gases using estimates of
fuel loads, combustion completeness, and burning efficiency. The diversity of wildfire CO2
emissions estimation methods will induce the difference in estimation results, but it also
promotes the progress of the estimation methods.
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Figure 3. The comparison between mean wildfire CO2 emissions of CT2019B, FINNv1.5, GFASv1.2
and our study in the conterminous United States from July to October in 2015∼2018.

Table 5. The wildfire CO2 emissions of CT2019B, FINNv1.5, GFASv1.2 and our study in the contermi-
nous United States from July to October in 2015∼2018.

Year Wildfire Emissions(Tg C) July August September October Mean

2015

CT2019B 0.537 8.614 3.356 1.450 3.489
FINNv1.5 1.840 7.238 1.872 2.246 3.299
GFASv1.2 1.154 18.391 1.319 2.481 5.836

Mean of CT2019B,
FINNv1.5,GFASv1.2 1.177 ± 0.652 11.414 ± 6.081 2.182 ± 1.053 2.059 ± 0.541 4.208 ± 2.082

Our study 3.568 8.251 1.552 4.263 4.408

2016

CT2019B 0.875 1.729 1.765 0.954 1.331
FINNv1.5 1.827 2.506 2.725 3.475 2.633
GFASv1.2 4.341 6.714 3.269 1.693 4.004

Mean of CT2019B,
FINNv1.5,GFASv1.2 2.348 ± 1.791 3.650 ± 2.682 2.586 ± 0.761 2.041 ± 1.296 2.656 ± 1.633

Our study 0.511 0.791 3.999 1.834 1.784

2017

CT2019B 1.202 4.204 4.622 1.210 2.810
FINNv1.5 1.553 4.664 6.629 3.949 4.199
GFASv1.2 6.803 3.317 6.982 1.966 4.767

Mean of CT2019B,
FINNv1.5,GFASv1.2 3.186 ± 3.137 4.062 ± 0.685 6.078 ± 1.273 2.375 ± 1.415 3.925 ± 1.627

Our study 1.758 NA 0.733 2.052 1.514

2018

CT2019B 1.556 3.568 1.620 0.733 1.869
FINNv1.5 3.905 7.771 2.918 3.168 4.441
GFASv1.2 6.071 8.340 4.803 1.354 5.142

Mean of CT2019B,
FINNv1.5,GFASv1.2 3.844 ± 2.258 6.560 ± 2.607 3.114 ± 1.600 1.752 ± 1.265 3.817 ± 1.933

Our study 2.087 3.061 4.100 2.246 2.873

3.3. Effect of OCO-2 XCO2 Retrievals

For each subgraph of Figure 4, the left panel shows the spatial distribution of CT2019B
wildfire emissions with 10m wind speed and wind direction, and the 10s averaged OCO-2
XCO2 retrievals with nadir mode, the right panel shows the latitude variation of 10s average
OCO-2 XCO2 retrievals with nadir mode.

As the Figure 4a shows, the massive wildfire occurs in the northwest area of the
conterminous United States, accompanied by north winds near the OCO-2 observation area.
Taking the observations of the northernmost in the wildfire area as the background value,
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the maximum increment of OCO-2 XCO2 retrievals is about 5.17 ppm. In Figure 4b, a larger
wildfire occurs in northwest region, but that day has south winds. Using observations
from southernmost in the wildfire area as the background value, the maximum increment
of OCO-2 XCO2 retrievals is approximately 3.16 ppm. In Figure 4c, the wildfire occurs in
northwest and southeast region, but the OCO-2 observations mainly located in the center by
southeast accompanied by north wind, the OCO-2 observations have an obvious upward
trend in the southeast where the wildfire area, the maximum increment of OCO-2 XCO2
retrievals is about 3.92 ppm. In Figure 4d, the wildfire mainly occurs in southeast region,
accompanied by southwest wind, the maximum increment of OCO-2 XCO2 retrievals is
about 1.91 ppm.

Figure 4. The spatial distribution of CT2019B wildfire CO2 emissions with the 10m wind speed
and wind direction, 10s average OCO-2 XCO2 retrievals with nadir mode (left panel), the latitude
variation of 10s average OCO-2 XCO2 retrievals with nadir mode (right panel). (a) 6 July 2015; (b) 11
August 2015; (c) 10 September 2015; (d) 12 October 2015.

Then analysis the XCO2 of DA_EXP3 with the same select days are shown in Figure 4.
The daily average XCO2 distribution of SIM_EXP1, SIM_EXP2, DA_EXP3 and ∆XCO2
between them are shown in Figure 5. In Figure 5a, the average XCO2 of SIM_EXP1,
SIM_EXP2 and DA_EXP3 in the northwest area of conterminous United States are 398.193
ppm, 398.192 ppm, 398.673 ppm respectively. Comparing with SIM_EXP1 and SIM_EXP2,
the XCO2 increment of DA_EXP3 mainly locate in northwest region where wildfire occurs
and northeast region where no wildfire. As Figure 4a shows the wildfire areas, the distribu-
tion of OCO-2 XCO2 retrievals and the wind direction, The XCO2 increment of northeast
region may affect by the north wind in northwest region and west wind in southwest
region.

In Figure 5b, the XCO2 of SIM_EXP2 is smaller than SIM_EXP1 due to the lack of
wildfire CO2 emissions in the northwest of conterminous United States. After assimilating
OCO-2 XCO2 retrievals, the XCO2 of DA_EXP3 has shown improvement in regions affected
by wildfires. Compared to SIM_EXP2, the results are more aligned with those of SIM_EXP1.
This suggests that assimilating OCO-2 XCO2 retrievals are effective in correcting deviations
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in CO2 concentration that are caused by wildfire emissions. Besides, the XCO2 distribution
of DA_EXP3-SIM_EXP2 and DA_EXP3-SIM_EXP1 in other area of conterminous United
States mainly due to the change of the initial CO2 concentration in each assimilation cycle.

In Figure 5c, the difference of XCO2 between SIM_EXP1 and SIM_EXP2 is small in
the southeast of conterminous United States. After assimilation, the XCO2 of DA_EXP3 in
the east region increased by assimilate with OCO-2 XCO2 retrievals, wind speed and wind
direction (Figure 4c). However, the XCO2 of DA_EXP3 in the middle region decreased due
to the smaller OCO-2 XCO2 retrievals in this area, and this phenomenon indicates that the
wildfire CO2 emissions in SIM_EXP1 may be underestimated.

In Figure 5d, the difference of XCO2 between SIM_EXP1 and SIM_EXP2 is mainly in
the southeast of conterminous United States where the wildfire occurs. Compared with
the XCO2 of DA_EXP3, the results of SIM_EXP1 and SIM_EXP2 are smaller in southwest
and middle north region, but larger in southeast, this may be affected by atmospheric
transmission, wind speed, wind direction and prior fluxes.

Figure 5. The spatial distribution of the daily XCO2 (upper panal) and ∆XCO2 (lower panel) of
SIM_EXP1, SIM_EXP2 and DA_EXP3. (a) 6 July 2015; (b) 11 August 2015; (c) 10 September 2015; (d)
12 October 2015.

From 2016 to 2018, The selected spatial distribution of CT2019B wildfire CO2 emissions,
OCO-2 XCO2 retrievals with nadir mode, the 10m wind speed and wind direction shows
in Appendix A.

4. Conclusions

In this paper, we evaluate the wildfire CO2 emissions in conterminous United States
estimated by the regional CO2 assimilation system with OCO-2 XCO2 retrievals. The
results is shown that the four-month (July to October) averaged wildfire CO2 emissions in
2015-2018 are 4.408 Tg C, 1.784 Tg C, 1.514 Tg C, 2.873 Tg C respectively. The results are fall
within one standard deviation of the estimates from CT2019B, FINNv1.5 and GFASv1.2,
except for 2017, even though the wildfire CO2 emissions has a big gap between different
datasets in monthly. And the reason that the estimates of CO2 emissions in 2017 has larger
uncertainty is the lack of OCO-2 XCO2 retrievals in August and September 2017.
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The results indicate the potential of the regional carbon assimilation inversion system
for estimating regional wildfire CO2 emissions. However, due to the representiveness
error of the observations, model error of the chemical transport model and assimilation
algorithm, the results of this study still have uncertainty. It needs more works to improve
the method for quantifying the wildfires CO2 emissions more accurately.
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Appendix A

Figure A1. The spatial distribution of CT2019B wildfire CO2 emissions with the 10m wind speed
and wind direction, 10s average OCO-2 XCO2 retrievals with nadir mode (left panel), the latitude
variation of 10s average OCO-2 XCO2 retrievals with nadir mode (right panel). (a) 28 July 2016; (b)
22 August 2016; (c) 9 September 2016; (d) 26 October 2016.

https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2019B/
https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2019B/
https://disc.gsfc.nasa.gov/datasets?keywords=OCO-2
https://disc.gsfc.nasa.gov/datasets?keywords=OCO-2
http://database.rish.kyoto-u.ac.jp/arch/ncep/data/ncep.reanalysis2/gaussian_grid/
http://database.rish.kyoto-u.ac.jp/arch/ncep/data/ncep.reanalysis2/gaussian_grid/
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Figure A2. The spatial distribution of CT2019B wildfire CO2 emissions with the 10m wind speed
and wind direction, 10s average OCO-2 XCO2 retrievals with nadir mode (left panel), the latitude
variation of 10s average OCO-2 XCO2 retrievals with nadir mode (right panel). (a) 18 July 2017; (b)
29 September 2017; (c) 13 October 2017.

Figure A3. The spatial distribution of CT2019B wildfire CO2 emissions with the 10m wind speed
and wind direction, 10s average OCO-2 XCO2 retrievals with nadir mode (left panel), the latitude
variation of 10s average OCO-2 XCO2 retrievals with nadir mode (right panel). (a) 13 July 2018; (b)
25 August 2018; (c) 13 September 2018; (d) 11 October 2018.
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