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Abstract 

 
This paper concerns the development and application of the Lagrangian function which is the difference 

between kinetic energy and potential energy of the system. Here irrotational, incompressible, inviscid fluid in 

finite water depth is considered. Our attention is to focus on the problem to solve water wave evolution with 

Lagrangian function which is obtained from Hamilton’s Principle. Then Lagrangian function is expanded 

under the assumption that the dispersion


 and the nonlinearity   satisfied )( 2 O= . Here the Lagrangian 

function is generalised up to ( )8O . The elevation of the free surface should be expanded to 
4

 order to get 

the Lagrangian function is in 
8

 order. Finally a wave model from Euler- Lagrangian equation of motion 

has been generalized which follows that the generalized wave velocity decreases with the large value of time 

and at very large time, a wave crest and trough will be diminished.  
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1 Introduction 
 

“Here we have a good discussion on the principles of different kinds of water wave theory. The governing 

mathematical equations of Eulerian conservation of mass, momentum, energy are used to describe different 

forms of water waves. Boussinesq equation represents a shallow water approximation to the exact Laplace 

problem which incorporates the balance between lowest-order dispersion and lowest-level non-linearity. Many 

researchers have tried to derive modified forms of the classical Boussinesq equation over last decades and a 

number of enhanced higher-order Boussinesq equations have been derived improving the dispersion and non-

linearity as well as flow kinematics and dynamics” (e.g., Nwogu [1], Agnon et al. [2], Madsen et al. [3,4] 

Among these, the formulation of Madsen et al. [3,4] is “most capable of treating highly non-linear waves to 

kh=25 for dispersion, with accurate velocity profiles up to kh=12. Dynamics research on Hamilton systems is an 

important subject in mechanics for a long time”. The principles of Hamilton mechanics settled a series of 

problems effectively that could not be solved by other methods, which showed theoretically the importance of 

Hamilton mechanics. Whitham [5] used “fluid dynamics, Hamilton principles and variational principles for 

water waves and related problems in the theory of nonlinear dispersive waves”. Luke [6] obtained “a Lagrangian 

function yielding the Laplace's equation and the boundary conditions at the surface and bottom”. Zakharov  [7] 

showed that “the water elevation and the potential at the free surface are canonical variables when formulating 

the water-waves problem in Hamiltonian formalism, the Hamilton function being the total energy of the fluid”. 

The mathematical properties of the Hamiltonian formalism for free surface waves was extensively studied by 

Miles [8], Milder [9], Radder [10] and many other authors. Hou et al. [11] used “the variational principle to 

establish a nonlinear equation for shallow water wave evolution”. Ambrosi [12] gave “a Hamilton formulation 

for surface waves in a layered fluid”. Lvov and Tabak [13] developed “a Hamilton formulation for long internal 

waves. Hongli et al. [14] derived water wave solutions using variation method”. In this paper solution of water 

wave equation is derived using Hamilton’s principle and then wave model from Euler-Lagrangian equation has 

been formed. 

 

2 Methodology

  
 

For the seek of solutions of water wave equations different researchers used so many methods that they reached 

their goal with various models in natural science and play a great role specially in fluid dynamics. Hamilton’s 

Principle for irrotational water waves is used to obtain Lagrange function from which generalized wave velocity 

can be derived directly for the given system. 

 

From the theory of an ideal and homogeneous fluid, the vorticity v  is a property associated with the fluid 

elements. It is carried along by the fluid motion. This implies that if a particular fluid element had zero vorticity 

initially, it will always have zero vorticity. The main property of a wave is its ability to transport information, 

energy and momentum over considerable distances without transport of matter. Thus the velocity field 

associated with the wave is irrotational and given by a velocity potential, , which according to the above 

equation satisfies the Laplace equation , 02 =   

 

Now the Hamilton’s Principle for irrotational water waves free of side conditions is 
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with Lagrange function 
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Here t is time, z is the vertical coordinate, x is the horizontal coordinate, x-axis represents undisturbed surface 

with constant depth H, ),,( tzx  is the velocity potential, here ),( tx  is the elevation of the free surface, and 

g is the acceleration of gravity. 
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Then, we have variation of   within the flow region 

 

                                                                          

(3) 

 

The variation of   gives the dynamical boundary condition on the free surface: 

 

                                                                                          (4) 

 

3 Formulation 
 

We introduce the following non-dimensional variables: 
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where k and a are wave number and wave amplitude respectively, and gHc =  is typical wave speed for 

shallow water. 

 

In terms of these non-dimensional variables, above equation can be rewritten as: 
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For the convenience of our calculations, the asterisks have been omitted and then kH=  and
H

a
=  stand 

for the dispersion and nonlinearity, respectively. 

 

Under linear approximation, Eqs. (6) to (9) become 
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Here we use the following coordinate transforms to describe the behaviors of water wave varying slowly with 

time,  
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where .tanh
12 


 =  

 

In terms of these variables, Eqs. (10) to (13) become 
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4 Solutions 
 

The solution of Eq. (14) in the bottom boundary Eq. (16) is  

 

( ) )18(1coshcos += zXq jj   

 

where 
jq is a constant. 

 

We have the following expression from the dynamical boundary condition (17) 
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Now we consider, 
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Now using these from Eq. (6) we obtain 
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Since z be an arbitrary value in ( ),1− , so each coefficient in power of (z + l) must be zero, thus 
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On the other hand, substituting Eq. (20) into Eq. (8) yields 01 = . Therefore, for all odds, 0=n , i.e.,  
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Supposing that =0 , we have 
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Now, the expression of velocity potential   is obtained: 
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By linear approximation, we also consider )23(.cos Xq j=  

 

Therefore, the velocity potential   can be found to be: ).1(coshcos),,( += zXqztx j   
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Neglecting the constant term 
2

1
, the above equation yields 
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The case of ( )2 O= , was considered by Benjamin [15] and Whitham [16] who obtained the Korteweg de 

Vries (KdV) equation. Here we also consider the case, and expand Lagrangian function up to ( )8O order 
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Hou et al. [11] used the lowest-order of  in their article.  
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Substituting it into Eq. (25), we can see that we should expand   to
4 , 
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Based on the dynamical boundary condition of the free surface Eqn. (9), we have 
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From Eq. (26), equating the coefficients of constant, 
2  and 

4  terms, we have 
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Eq.(1) can be rewritten as 0=  dL  
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where   =
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From eq. (28) we have the Lagrangian  
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Obviously, Lagrangian is a function of generalized coordinates and generalized velocity. 

 

Then from Lagrange’s Equation of motion  

)30(0
8

3 3

4

2

=− jj qq





  

Solving this for  
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From Eq. (31) it is obvious that generalized velocities be  

 

2

3

4 −−= jq                                                                                  (32) 

which gives a wave model from Euler- Lagrangian equation. Thus the generalized velocity decreases with the 

large value of time. But at larger time generalized velocity will be diminished and then wave crest and trough 

will be flattened [17]. 

 

5 Conclusion 
 

Firstly, we have derived the Lagrangian function from Hamilton’s principle which is expanded up to ( )8O , 

then after a few simplifications and transformations, water wave equations are solved. From Lagrange’s 

equation of motion, it is seen that the generalized wave velocity decreases with the large value of time and the 

velocity will be diminished when time is large enough. Again from the above discussion of non-dimensional 

free surface profiles, wave crest and trough will be flattened at larger time. The results which we obtained in the 

above topics can be studied for the effect of wave velocity in deep water and also we can show that wave crest 

and trough will be flattened at very very large time.
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