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Abstract 
 

Deissler’s decay law plays a great significance in Homogeneous and MHD turbulence flow. Fluid Dynamics 

are an interesting part of research work which focuses on many branches of science, engineering science and 

also in meteorology. In turbulent flow, the fluid particles show irregular movement and unpredictable 

behavior. The effect of the Prandtl number on Deissler’s energy decompose law of MHD turbulence at 4-

point correlations has been described. 
 

 

Keywords: Deissler’s decay law; MHD turbulence; fluid dynamics; turbulent flow; kinematics viscosity; 

viscous shear stress; spectral equations. 
 

1 Introduction 
 

In fluid dynamics turbulent flow is a flow system characterized by disorganization and whose performance is 

actually irregular. In space and time, it shows small momentum circulation, high momentum convection and 
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quick disparity of pressure and velocity. In this case, flow parameters are  abruptly changed  e.g., kinematic 

viscosity causes instability of the viscosity. The problem of turbulence is very difficult to solve for the case of 

nonlinearity. Turbulent flow problems are always treated statistically for its irregular conditions. Turbulent flow 

is always disorganized but not all disorganized flows are turbulent. In fact, turbulence is an inter-active 

movement of eddies of different sizes.. As a consequence the velocity at any point varies both in magnitude and 

direction with respect to time. Such a diffused flow is characterized as turbulent flow. At Reynolds number 

4,000, the nature of flow in a circular pipe is always assumed to be turbulent. 

 
For turbulent flow, a constant source of energy supply is required because turbulence dissipates rapidly as the 

kinetic energy is converted into internal energy by viscous shear stress. Turbulent fluctuations indicate the 

energy losses for the velocity and pressure distributions in turbulent flows. Reynolds, O. [1] had the first 

methodical investigation on turbulent flow. Reynolds [1], is one of the renowned researchers who studied 

turbulent flow.  

 
In particular, a turbulent flow exhibits all of the features, e.g. disorganized, chaotic, irregular behavior.             

In brief, turbulent flow exhibits irregular temporal behavior at any selected spatial location. Throughout this 

work, decay of energy of Magneto-hydrodynamic Turbulent Flow for four- point correlations has been 

considered. Finally, the result has established how energy decays due to the effect of Prandtl                             

Number. Kraichnan’s [2] established logically different ideas from previous efforts for direct interaction 

approximation. Using Dessilar’s energy decay law Bkar ,pk et al. [3] studied “the decay of energy of  MHD 

turbulence for four-point correlation” and  Bkar ,pk et al. [4] generalized “it for dust particle system”. He also 

obtained [5] “energy decay law for rotating dust particles”. Bkar, pk et al. [6] also studied “Effects of first-order 

reactant on MHD turbulence at four-point correlation”. Bkar, pk et al, [7] obtained “4-Point Correlations of 

Dusty Fluid MHD Turbulent Flow in a 1st order Chemical-Reaction”. Further Bkar, pk et al, studied [8] “energy 

decay of MHD turbulence in a rotating system for firsrt order chemical reaction”. Taylor, 1921 [9] developed 

“the impression of the Lagrangian correlation coefficient”. Tailor, G. I. [10,11] and Von Karman, T.                   

[12,13] described “turbulence in terms of collisions between discrete entities and then set up the thought of 

velocity correlation at two or more points”. Taylor, G. I. derived the “energy spectrum” method to explain the 

probability density function for energy in the turbulent flow field. The study of turbulence had been                

generalized by Boussinesq [14] and Reynolds [1]. Reynolds, O. [1] first found the remarkable difference 

between laminar and turbulent flows. Based on the problems of practical importance Prandtl [15]                   

established “mixing length” theory such as pipe flows over borders of exact shapes. In 1938 Taylor, G. I. [16] 

discussed the non-linearity of the dynamical equations and found the probability distribution of the                    

difference between the velocity components at two points. Taylor, G. I.  [10] Defined correlation coefficients 

between the fluctuating quantities and established the design that the velocity of the fluid of turbulent                 

motion is a random continuous function .of position and time. Kolmogoroff’s [17] contributed to                     

understanding the physics of turbulence and gives interpolation and extrapolation o stationary sequences and in 

[18] he explained a refinement of previous hypotheses concerning the local structure of turbulence                              

in a viscous incompressible fluid at high renolds number. Hopf, E. [19,20] also constructed theory of the 

characteristic functional to turbulence and first order reactant in MHD turbulence before the final period.                

Some characteristics of turbulent motion are completed by Kampe de Feriet. J. [21]. Applying Fourier 

transformations they [19,20, and 21] established the three dimensional energy spectrum functions. Monuar 

Hossain, et al. [22] obtained homogeneous fluid turbulence before the final period of decay for four-point 

correlation in a rotating system for first-order reactants. Azad et al. [23] obtained the  effect of chemical reaction 

on statistical theory of dusty fluid MHD turbulent flow for certain variables at three- point distribution 

functions .Bkar, pk et al. [24] also obtained the effect of first order chemical reaction for Coriolis force and dust 

particles for small Reynolds number in the atmosphere over territory. Azad et al. [25] established effect of 

chemical reaction on statistical theory of dusty fluid MHD turbulent flow for certain variables at three- point 

distribution functions. Shimin Yu et al. [26] studied the effect of Prandtl number on mixed convective heat 

transfer from a porous cylinder in the steady flow regime. Using Deissler’s decay law [27,28] and Abdul Malek 

Ph.D Thesis [29] he  studied the analytical investigations on some problems of turbulent and magneto-

hydrodynamic turbulent flow.  Now we are going to study the effect of the Prandtl number on Deissler’s decay 

law at four-point correlations. In this context, a few concepts and mathematical tools for the foundation of MHD 

turbulence have been discussed. This report shows some aspects of fluid dynamics that are relevant to the 

Deissler’s energy decay law 
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2 Four-point Correlation and Spectral Equations  
 

We take the momentum equation of MHD turbulence at the point p and the induction equation of magnetic field 

fluctuation four point correlation and equations at 
pp ,  and 

p 
as 
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where is the total MHD pressure =is the hydrodynamic pressure, is the fluid density, 

 is the Magnetic Prandtl number,  is the kinematics viscosity,  is the magnetic diffusivity, 

is the magnetic field fluctuation, is the turbulent velocity , t is the time, is the space co-

ordinate and repeated subscripts are summed from 1 to 3 . 

Multiplying Equ. (1) by  (2) by (3) by (4) by  and adding the four equations, 

we than taking the space or time averages and they are denoted by 
( ).......
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...........

. We get 
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Using the transformations 
 

  
 

into Equ. (5) we get, 
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 Multiplying Equ.(17) by taking time averages and writing the equation in terms of the independent 

variables , , we have, 
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Equation (19) can be used to eliminate  
( )mji  

 from Equ. (16) if we take contraction. 

 

3 Three-point Correlation and Spectral Equations 
 

The spectral equations corresponding to the three-point correlation equations by contraction of the indices i and 
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4 Solution Neglecting Quintuple Correlations 
 

Neglecting all the terms on the right side of Equ.(16), the equation can be integrated between and t to give 
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At ,  have been assumed independent of; that assumption is not, made for other times. This is one of 

several assumptions made concerning the initial conditions, although continuity equation satisfied the 

conditions. The complete specification of initial turbulence is difficult; the assumptions for the initial conditions 

made here in are partially on the basis of simplicity.  Substituting   integrating with 

respect to 1k 
, 2k  ,  and we get, 
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Here H is the magnetic energy spectrum function, which represents contributions from various wave numbers 

(or eddy sizes) to the energy and G is the energy transfer function, which is responsible for the transfer of 

energy between wave numbers, Equ. (23) which depends on the initial conditions. 
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where . 

 

Integrating Equ.(26) with respect to .We has 
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where,                                                                      

 

Then after integration equation  
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Here 1H
and 2H

 magnetic energy spectrum arising from consideration of the three and four –point correlation 

equations respectively. The total   magnetic turbulent energy is  
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By using above values, Equ.(31) we get 
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This is the energy decay law of MHD turbulence for four point correlations.where, 
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If 1L
=0 and 2L

=0   that is C=0 and D=0 in Equ.(33) than we get,  
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This is the energy decay of MHD turbulence in three- point correlations which was obtained earlier by Sarker 

and Kishore [31] 
 

Table 1 The value of the constants and parameter used  in Equ.(33) 
 

Fluid 
MP

 

  N0 
0  1  

A B C D 

Mercury 0.015 0.10 .1 .01 .02 .00058 4.18×10-7 3.69×10-13 5.87 

0.015 0.08 .1 .01 .02 .00081 1.6×10-6 -1.01×10-12 20.03 

Mix Gas 0.2 80 .1 .01 .02 1.15×10-6 5.75×10-18 3.78×10-16 9.95×10-13 

0.2 200 .1 .01 .02 3.15×10-7 2.36×10-20 6.12×10-18 6.44×10-15 

Hyd Gas .04 100 .1 .01 .02 2.5×10-6 6.8×10-17 2.7×10-14 9.79×10-13 

0.4 300 .1 .01 .02 4.86×10-7 9.4×10-20 1.9×10-16 2.3×10-15 

Hel Gas 0.7 

0.7 

120 

400 

.1 

.1 

.01 

.01 

.02 

.02 

4.6×10-6 

7.6×10-7 

4.8×10-16 

3.4×10-19 

7.4×10-13 

3.3×10-15 

9.4×10-23 

1.2×10-15 
 

5 The Graphical Representations and Explanations 
 

Figure of Equ.(33) for  MP
=0.015  :  

 

 
 

Fig. 1. (a): Sketch of Equ.(33).                              Fig. 1. (b): Sketch of Equ.(33) 
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Fig. 1(a), Figure 1(b) represents the energy decay curve for four-point correlations of Equ.(33). When the 

Prandtl no. is small as of mercury MP
=0.015 and It is observed that the energy decreases more rapidly as 

viscosity decreases. 
 

Figure of Equ.(33) for  MP
=0.2: 

 

 
 

Fig. (2a). Sketch of Equ.(33)         Fig. (2b). Sketch of Equ.(33) 
 

Fig. (2a) and Fig. (2b) are the energy curve of Equ.(33) when the Prandtl no. is as of mixture of gas for MP
=0.2 

and  =80 in Fig. (2a) and  =200 in Fig. (2b). In this case, energy decreases rapidly as viscosity decreases. 
 

Figure of Equ.(33) for  MP
=0.4: 

 

 
 

Fig. (3a). Sketch of Equ. (33)                 Fig. (3b). Sketch of Equ. (33) 
 

Fig. (3a), Fig. (3b) indicate the curve of energy Equ. (33). When the Prandtl no. is as of Hydrogen gas, MP
=0.4 

and  =100 and =300. Result: Energy decreases as well as viscosity decries. 
 

Figure of Equ.(33) for  Pr=0.7: 
 

 
 

Fig. (4a). Sketch of Equ. (33)               Fig. (4b). Sketch of Equ. (33) 
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Fig. (4a) and Fig. (4b) are the energy curve of Equ.  (33). When the Prandtl No. is as of Helium gas Pr=0.7 and 
 =120 and  =400. Energy decreases rapidly as viscosity decreases from 400 to 120. 

 
Comparing Fig. (1a)-(4b): we see that Energy changes rapidly as Prandtl no. changes. Fig. (1)-(4): y1, y2, y3, y4, 

y5and y6 are represented the energy decay curves of MHD turbulence for four-point correlations of Equ. (33) at 

several times From Fig. 1 and Fig. 4.we see that, in four- point correlations system energy die out faster than the 

three- point correlations system in MHD turbulent flow [32,33]. 

 

6 Comparison between Four -point and Three Point Correlations of 

Equation 
 

 
 

Fig. (5a). Energy curves of Equ.(33)                                        Fig. (5b). Energy curves of Equ.(34) 

 
Fig. (5a) and Fig. (5b) represents the energy decay curve for four-point and three-point correlations of equation. 

When the Prandtl no. is small as of mercury MP
=0.015. It is clear that, in four-point correlations energy 

decreases more rapidly than three point correlations.  

 
Figure of Equ.(33) and (34) for large Prandtl No. 

 

 
 

Fig. (6a). Energy curves of Equ.(33)          Fig. (6b). Energy curves of Equ.(34) 

 

When the Prandtl no. is as of  mixture of gas MP
=0.2 i.e. for large Prandtl no. we conclude that, energy at four- 

point correlations and  three -point correlations has no change significantly.  
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Figure of Equ.(33) and (34) for Hydrogen gas: 

 

 
 

Fig. (7a). Energy curves of equ.(33)                                      Fig. (7b). Energy curves of equ.(34) 

 

Fig. (7a) and Fig. (7b) indicate the energy curve equation (33) and (34). When the Prandtl No.  as of Hydrogen 

gas MP
=0.4 . 

 

We observed that there is no change in energy for four point and three point correlations as for same viscosity  

 

7 Conclusion 
 

• For mercury, I observed that the energy decreases more rapidly as viscosity decreases. 

• In Helium gas for Pr=0.7 and  =120 and  =400. Energy decreases rapidly as viscosity decreases. 

• It is observed that the decay law for four-point correlations systems energy decreases rapidly more and 

more by exponential manner than the decreases of three point correlation systems. 

• We observed that there is no change in energy for four point and three point correlations as for same 

viscosity. 

• If the time increases than energy decay also increases. 

• We finally conclude that from all above the figures that energy decreases as viscosity and Prandtl number 

decrease. 
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