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Abstract: In some fire classification task samples, it is especially important to learn and select
limited features. Therefore, enhancing shallow characteristic learning and accurately reserving deep
characteristics play a decisive role in the final fire classification task. In this paper, we propose
an integrated algorithm based on bidirectional characteristics and feature selection for fire image
classification called BCFS-Net. This algorithm is integrated from two modules, a bidirectional
characteristics module and feature selection module; hence, it is called an integrated algorithm. The
main process of this algorithm is as follows: First, we construct a bidirectional convolution module to
obtain multiple sets of bidirectional traditional convolutions and dilated convolutions for the feature
mining and learning shallow features. Then, we improve the Inception V3 module. By utilizing the
bidirectional attention mechanism and Euclidean distance, feature points with greater correlation
between the feature maps generated by convolutions in the Inception V3 module are selected. Next,
we comprehensively consider and integrate feature points with richer semantic information from
multiple dimensions. Finally, we use convolution to further learn the deep features and complete the
final fire classification task. We validated the feasibility of our proposed algorithm in three sets of
public fire datasets, and the overall accuracy value in the BoWFire dataset reached 88.9%. The overall
accuracy in the outdoor fire dataset reached 96.96%. The overall accuracy value in the Fire Smoke
dataset reached 81.66%.

Keywords: sequence model; bidirectional convolution neural network; fire image classification;
Euclidean distance; deep learning

1. Introduction

In recent years, deep schools have been widely used in various image tasks [1,2]. Fire
prediction is a very important task. Recently, there has been a diversified trend in deep learning
research on fires. For this purpose, researchers further validate and complete tasks related
to fires by constructing different deep learning models. Among them are the classification
task [3,4], the segmentation task [5,6] and the target detection task [7,8] of fire images. The
data type of the fire image classification task is basically derived from natural images [9,10],
and most of the data are generated by various imaging devices. Therefore, in the task of fire
data classification, there are fewer samples from multiple datasets, and the characteristics are
diverse, exacerbating the difficulty of feature learning. Wang Z. et al. [11] obtained smoke
and flame data from multiple perspectives [12], trained the smoke and flame data using
convolution neural networks, implemented repetitive learning of shallow layer features in
images through CNN layers, and integrated deep image features through fully connected
layers. The final experimental results indicate that convolution neural networks and fully
connected layers can effectively complete fire prediction tasks. Harkat H. et al. [13] introduced
raw fire data into two convolution channels for feature learning. By using dilated convolution
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and multiple-scale convolution, the model can obtain a broader receptive field to fully learn
the shallow features of fire images and enforce the model’s learning ability for shallow
features. Ayala A et al. proposed a KutralNext+ algorithm for fire data feature learning. The
principle is to integrate deep separable convolution with a residual strategy, which implements
deep feature fusion and reduces model complexity through a cross-channel feature mapping
strategy. The results achieved optimal accuracy on both the FiSmo dataset and the FismoA
dataset. Majid S et al. proposed a Grad-CAM algorithm to accurately identify flame regions
in images. The principle is that the attention mechanism can better locate the position of the
flame in the deep feature section. The EfficientNetB0 algorithm is combined to fully learn the
shallow features of the image. Finally, the fusion algorithm achieved precise classification of
fire tasks. The result obtained a recall rate of 97.61% on the real-world fire image dataset.

Through the above preliminary research, we find that convolution neural networks [14],
attention mechanisms [15] and appropriate fusion strategies in deep learning can better
complete fire classification tasks. Of course, other strategies and algorithms can also effectively
complete the fire classification task. With the rapid development of deep learning, we can
find that shallow features require more thorough learning, while deep features require more
accurate selection. Therefore, in this paper, we aim to obtain richer shallow features, screen
out more representative deep features, and propose an integrated algorithm for bidirectional
feature learning and deep feature selection. The contributions are as follows.

• To obtain more image semantic information, we construct multiple sets of bidirectional
traditional convolutions and bidirectional dilated convolutions, and the module adopts
a codirectional feature fusion strategy and fuses the feature maps from different
convolutions in the same direction. This module not only enables the network to
obtain more semantic information but also generates shallow features to guarantee
the latter deep feature screening strategy.

• We use the Inception V3 [16] module and introduce multiple sets of Euclidean
distance [17] strategies and bidirectional attention mechanism strategies to calcu-
late the correlation between feature maps and feature points produced by kernel
convolution at different scales at the same level. We select features based on the
importance of each feature point.

• We conducted sufficient ablation experiments on three datasets to demonstrate the
feasibility of the proposed strategy in this paper.

The main contents of the other sections in this paper are as follows. In the second
section, we conduct further research and analyze the advantages and disadvantages of
various network strategies for fire image classification. The third section introduces the
relevant details of the BCFS-Net integration algorithm proposed in this paper. In the fourth
section, we verify the comparison between the proposed BCFS-Net integration algorithm
and other algorithms, as well as the practicality of various strategies in the BCFS-Net
algorithm. The fifth section summarizes this paper.

2. Related Research

In recent years, deep learning has achieved certain results in fire detection tasks, and
most models are based on convolution strategies or variants related to convolution in
learning shallow features. Park M et al. [18] constructed a multitask transfer learning
network for fire detection. Its hardcore algorithm is composed of VGG-16, ResNet-50, and
DenseNet-121; learns the shallow features of data; and provides feature support for the
MLC algorithm proposed in the latter stage. The results achieved the best effect on a set of
open available multilabel classification task datasets. Liu Y et al. used AlexNet as the hard-
core network of their algorithm to extract shallow features of smoke data. The relationship
between the AlexNet submodules is strengthened through ResNet’s residual strategy. It
provides feature points containing more semantic information for the final fully connected
layer input by fully optimizing and learning shallow features. This algorithm achieves
an accuracy of 98.56% on relevant fire and smoke datasets. Wang J. et al. [19] proposed a
multichannel convolution strategy (DarkC-DCN), because multichannel convolution can
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obtain more abundant semantic information. Compared to the SENet module, convolution
requires fewer computations than the fully connected layer, resulting in better performance.
The results of this algorithm on multiple sets of fire datasets are 4.5% more accurate on av-
erage than those of multiple core networks. Compared with the latest algorithm, the DECA
module proposed in its algorithm consumes fewer computational resources. Through the
above research, we find that different convolution strategies can obtain different semantic
information, thus further improving the quality of features. Other research on different
convolution strategies, such as [20–23], has found that the existing research utilizes various
strategies for learning and then fuses the feature maps generated by learning. Although
more semantic information can be obtained, multiple modules or multichannel convolution
will still generate a large number of calculation parameters.

Although shallow features contain rich semantic features, they still need to be further
improved for the final task classification. Therefore, researchers need to further optimize
the quality of each feature point. The attention mechanism assigns different weights to
different feature points, which can help researchers further optimize the selection of shallow
features. Yar H. et al. proposed a dual attention mechanism network for fire detection. The
first attention mechanism of this algorithm is used in hardcore networks, which highlights
important channels and generates efficient feature maps. The second attention mechanism
of this algorithm is used to capture the spatial relationship between feature points and
expand the differences between fire and no fire feature points. The proposed algorithm
achieved the best results on four open datasets. Li S. et al. [24] proposed an accurate fire
detection method. This method enhances the model’s learning ability for fire data through
multiscale convolution and enhances the connections between feature maps through a
dense skip link strategy. To further expand the differences between different channels, a
new channel attention mechanism was constructed to emphasize the contributions between
different feature maps. Hu Y. et al. [25] proposed an MVMNet algorithm. This algorithm
uses YOLO5’s feature extractor to obtain shallow features. Subsequently, we construct a set
of VAM modules to assign two sets of weights to each feature point and further highlight
the feature points with significant weights through the strategy of adding weight values.
Finally, fusing the new weights and feature points is the basis for the final classification. The
algorithm has achieved good experimental results in both target detection and classification
tasks for fires. Although the attention mechanism module can further expand the gap
between different feature points, it only reduces the impact of lower-weighted feature
points on the entire classification task and cannot completely constrain these feature points.
Of course, attention mechanisms also play a positive role in other fire image tasks [26–28].

Through the above research, we found that fusing different convolution strategies
can obtain richer semantic information. Second, through the attention mechanism, more
attention can be given to fire characteristics, expanding the gap between fire areas and
non-fire areas. Therefore, in this paper, we propose an integrated algorithm for bidirectional
feature learning and deep feature selection. The core idea of this algorithm is to obtain
more shallow features through bidirectional convolution of traditional convolution and
dilated convolution. Then, the weight values of the same feature point with different
discoveries are obtained through a bidirectional attention mechanism. The Euclidean
distance strategy is used to filter out feature points with greater correction between the
feature maps generated by each convolution in the Inception V3 module and preserve them
to obtain more semantic information-rich feature points comprehensively considered and
integrated from multiple dimensions. Finally, we use convolution to further learn the deep
features and complete the final fire classification task.

3. BCFS-Net Algorithm
3.1. BCFS-Net Algorithm

We divided the BCFS-Net algorithm into three subparts. In the first part, we imple-
mented data input and constructed a bidirectional feature learning module (DFM) to obtain
shallow features generated by multiple sets of bidirectional traditional convolution and
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dilated convolution. In the second part, we used the weight selection module (WSM)
and utilized the bidirectional attention mechanism and Euclidean distance to filter out
feature points with greater correlation between the feature maps generated by each convo-
lution layer in the Inception V3 module. Subsequently, multiple sets of weight coefficients
generated by the cross-attention mechanism were combined with the Euclidean distance
theorem to achieve the separation of useful and redundant features. In the third part, we
used convolution fully connected layers to further learn and implement feature mapping
for deep features and complete the final fire classification task. We constructed a model
structure diagram of the BCFS-Net algorithm in Figure 1.
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3.2. Bidirectional Feature Learning Module

The bidirectional feature learning module mainly obtains two sets of feature maps
through traditional convolution and dilated convolution and obtains richer semantic in-
formation through different receptive fields. In this paper, the original input scale of the
image is X ⊂ RH∗W∗C, directly inputs X into traditional convolutions and dilated convolu-
tions for feature learning, and Formulas (1) and (2) are expressed as follows. The process
for obtaining local and global semantic information through multiscale convolution and
multiscale dilated convolution is shown in Figure 2.

fTC = convk=5,s=2(
h

∑
m=1

v

∑
n=1

(xh,v ∗ wh,v + bh,v)) (1)

fAC = convd=2
k=5(

h

∑
m=1

v

∑
n=1

(xh,v ∗ wh,v + bh,v)) (2)

fTC represents the operational results of traditional convolutions, fAC represents the
operational results of dilated convolutions, x represents the characteristic points of the
sample, h represents the horizontal coordinate axis, v represents the vertical coordinate
axis, w represents the weight coefficient, b represents the bias function, k represents the size
of the convolution kernel, d represents the scale of dilated convolution expansion, and s
represents the step size of the convolution.
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Figure 2. (a) Shallow features obtained by traditional convolution; (b) shallow features obtained
by dilated convolution. The blue circle represents the feature points obtained after the convolution
operation. The red and blue circles represent the feature points participating in the calculation. The
light blue circles do not participate. The green circles represent another set of feature points that
participate in the calculation.

As Figure 2 shows, taking the convolution kernel equal to 3 and the step size equal to
1 as an example, traditional convolution and dilated convolution involve similar feature
points during computation but can obtain different semantic information. Through two
sets of convolutions, the DFM module obtains feature points with richer information, and
we introduce a reverse convolution calculation. Formula (3) is as follows:{

rTC = 0 − fTC
rAC = 0 − fAC

(3)

rTC represents traditional convolution inverse feature points, and rAC represents
dilated convolution inverse feature points. There are two reasons for this purpose. The
first reason is that it can better reverse-highlight the importance of positive or negative
sample feature points in feature maps. For example, when the values of feature points
are 1, 0.5, and 0.2, the feature points with a value of 1 make the maximum contribution to
the output layer. In contrast, when the feature point values become −1, −0.5, and −0.2,
the feature point with a value of −0.2 makes the maximum contribution to the output
layer. The second reason is that it is easier to distinguish between positive and negative
feature points and perform targeted calculations. As shown in Formula (4), we perform
separate addition operations on the positive and negative sample feature maps generated
by traditional convolution and dilated convolution.{

DFM f = fTC + fAC
DFMr = rTC + rAC

(4)

DFM f represents the operational results of fusing positive sample feature points from
traditional convolution and dilated convolution. Through the above calculations, we fused
the positive sample feature points of traditional convolution and dilated convolution with
each other, and at the same time, we fused the negative sample feature points of traditional
convolution and dilated convolution with each other. To ensure the integrity of the image
semantic information, we fused DFM f and DFMr using Formula (5). The output feature
map F of the final shallow feature is obtained in step 1.

F = Cat(DFM f , DFMr) (5)

3.3. Weight Selection Module

The weight selection module consists of a bidirectional attention mechanism and a
Euclidean distance strategy. In the WSM module, we first create two sets of attention
mechanisms for the output of each submodule of the Inception V3 model and assign two



Electronics 2023, 12, 4566 6 of 16

sets of weight coefficients to each feature point. As shown in Formula (6), the Inception V3
module and the improved Inception V3 weight selection module are shown in Figure 3.

Wk=5 = Fk=5, Ch5, Cv5
Wk=3 = Fk=3, Ch3, Cv3
Wp=2 = Fp=2, Ch2, Cv2

(6)

Fk=5, Fk=3, Fp=2 represent the feature maps generated at different convolution kernel
sales in the Inception V3 module separately, Ch represent the weight coefficient of horizontal
attention mechanism allocation, Cv represent the weight coefficient of vertical attention
mechanism allocation, and Wk=5, Wk=3, Wp=2 represent the feature map output of different
convolution modules combined with bidirectional attention mechanisms in the Inception
V3 module.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 17 
 

 

traditional convolution and dilated convolution with each other. To ensure the integrity 

of the image semantic information, we fused fDFM  and rDFM  using Formula (5). The out-
put feature map F  of the final shallow feature is obtained in step 1. 

( , )f rF Cat DFM DFM=
 

(5)

3.3. Weight Selection Module 
The weight selection module consists of a bidirectional attention mechanism and a Eu-

clidean distance strategy. In the WSM module, we first create two sets of attention mecha-
nisms for the output of each submodule of the Inception V3 model and assign two sets of 
weight coefficients to each feature point. As shown in Formula (6), the Inception V3 module 
and the improved Inception V3 weight selection module are shown in Figure 3. 

5 5

3 3

2 2

5 5

3 3

2 2

, ,
, ,
, ,

h v

h v

h v

k k

k k

p p

W F C C
W F C C
W F C C

= =

= =

= =

 =


=
 =

 (6)

5 3 2, ,k k pF F F= = =  represent the feature maps generated at different convolution kernel 
sales in the Inception V3 module separately, hC  represent the weight coefficient of hori-

zontal attention mechanism allocation, vC  represent the weight coefficient of vertical at-

tention mechanism allocation, and 5 3 2, ,k k pW W W= = =  represent the feature map output of dif-
ferent convolution modules combined with bidirectional attention mechanisms in the In-
ception V3 module. 

Filter

Cov(k=5)

Relu+BN

Cov(k=1)

Relu+BN

Cov(k=3)

Relu+BN

Cov(k=1)

Relu+BN

Maxp(p=2)

Relu+BN

Cov(k=1)

Relu+BN

Cat
 

Filter

Cov(k=5)

Relu+BN

Cov(k=1)

Relu+BN

Cov(k=3) Maxp(p=2)

Relu+BN

Cov(k=1)

Relu+BN

Cat

Relu+BN

Cov(k=1)

Relu+BN

Double 
Attention

Double 
Attention

Double 
Attention

h5 v5 h3 v3 h2 v2

ED

U32

ED

ED

U53

U52

 
(a) (b) 

Figure 3. (a) Inception V3 module; (b) weight selection module. 

We add a bidirectional attention mechanism and Euclidean distance strategy to the Inception 
V3 module and introduce the output feature maps of the two submodules into the bidirectional 
attention mechanism and obtain the corresponding two sets of weight coefficients. Then, we intro-

Figure 3. (a) Inception V3 module; (b) weight selection module.

We add a bidirectional attention mechanism and Euclidean distance strategy to the
Inception V3 module and introduce the output feature maps of the two submodules into
the bidirectional attention mechanism and obtain the corresponding two sets of weight
coefficients. Then, we introduce the two sets of weight coefficients and the original feature
maps of the corresponding submodules into the Euclidean distance strategy and obtain the
deep feature maps U. As shown in Formula (7), we obtain the similarity of each feature
point between different submodules. Setting the threshold T, we preserve feature points
with the same semantic information (positive and negative sample feature points) and rich
semantic information expression between each submodule and keep them as a deep feature
map. The detailed information is shown in Formula (8).

U53 = ED(Wk=5, Wk=3)
U32 = ED(Wk=3, Wk=2)
U52 = ED(Wk=5, Wk=2)

(7)

{
V =

√
(n1 − n2)

2 + (m1 − m2)
2

YU = θ(Vi, 1), T ≤ V
(8)
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YU represents a new threshold weight matrix for deep features, θ represents the
replacement function, V represents the matrix of Euclidean distance, n1 and n2 represent
the horizontal weight coefficients of different submodules, and m1 and m2 represent the
vertical weight coefficients of different submodules.

Finally, we describe the process of feature selection under the Euclidean distance
strategy in Figure 4. When the T value is greater than the value V of the feature, we replace
the value V with 1; otherwise, we replace V with 0. In the end, the point multiplication
strategy of the matrix is used to achieve the direct replacement of the feature points.
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Figure 4. Process of feature selection based on the Euclidean distance strategy. In the above figure, n
and m represent the weight coefficients in both directions, U represents the output of useful features,
R represents the output of redundant features (the semantic information with fewer feature points
will be directly eliminated), ED represents the Euclidean distance strategy, and dots represent the
feature map and the new threshold weight matrix point multiplication strategy. T represents the
threshold. 1 and 0 represent the matrix of all 1 and all 0. The black dashed box represents the
threshold screening process.

3.4. Feature Dimension Reduction and Fusion

We obtain the final deep features after the weight selection of the module and integrate
them through the convolution layer and fully connected layers. The specific Formula (9) is
as follows: {

Cov = Covk=1(Covk=3(MaxPool(U)))
Fall = Flatten(Con)

(9)

Cov represents the convolution, MaxPool represents the maximum pooling, and Fall
represents the reserved feature points before the classification of fire tasks.

4. Experimental Results
4.1. Datasets

In this paper, we validate our proposed BCFS-Net algorithm using three open available
fire datasets. In this section, we will provide a detailed introduction to the three datasets.

BoWFire [29,30]: This dataset consists of 226 images, including 119 images with fire scenes
(TB) and 107 images without fire scenes (Nor). The scale of each image in this dataset is
50 × 50 pixels. The data can be downloaded from the following website:
https://bitbucket.org/gbdi/bowfire-dataset/downloads/ (accessed on 27 September 2023).

Outdoor Fire [31,32]: The dataset was created during the NASA Space Apps Challenge in
2018, and the goal was to use the dataset to develop a model that can recognize images
with fire. The data are divided into two folders: the fire_images folder contains 755 outdoor
fire images, some of which contain heavy smoke, and nonfire_images contain 244 natural
images; it can be downloaded from the following website:
https://www.kaggle.com/datasets/phylake1337/fire-dataset (accessed on 27 September 2023).

https://bitbucket.org/gbdi/bowfire-dataset/downloads/
https://www.kaggle.com/datasets/phylake1337/fire-dataset


Electronics 2023, 12, 4566 8 of 16

Fire Smoke [33,34]: This dataset consists of 1048 images, including 430 images with fire
scenes, 457 images with smoke scenes, and 161 images without fire scenes. The data can be
downloaded from the following website:
https://www.kaggle.com/datasets/ashutosh69/fire-and-smoke-dataset (accessed on
27 September 2023).

In this paper, we divided three sets of data into training, validation, and testing sets
using the same random seeds for data partitioning. Their ratio was 7:1:2 (if the dataset
contained the test data, we did not prepare the test dataset). Our server was a Tesla V100
16G, completed in the Keras deep learning environment. The learning rate was equal
to 0.0001. The optimizer was Adam. The code we used was Python. All the following
experiments were completed in a unified environment.

4.2. Evaluation Criteria

In this paper, we evaluate various models and ablation experiments using average
accuracy (AA), overall accuracy (OA), and Kappa coefficients.

AA =
1
S
(

n1

m1
+

n2

m2
+ . . . +

nS
mS

) (10)

OA =
n1 + n2 + . . . + nS

m1 + m2 + . . . + mS
(11)

Kappa =
OA − (n1 × m1 + n2 × m2 + . . . + nS × mS)

S × S

1 − (n1 × m1 + n2 × m2 + . . . + nS × mS)

S × S

(12)

n1, n2, n3 . . . nS represent the number of samples in each category with correct predic-
tion results. m1, m2, m3 . . . mS represent the original labels of each class sample. S represents
the number of types of classes.

All experiments were conducted on the Tesla V100 32G server. All models in the
experiment were performed with the Keras deep learning library and were written in
Python. All algorithms used the Adam optimization function, and the learning rate was set
to 0.0001. The binary cross-entropy loss function was used. Each training round had 64
samples. Each model was iterated 500 times.

4.3. Comparison between the BCFS-Net Algorithm and Other Algorithms

In this section, we compare the BCFS-Net algorithm with the hardcore algorithm and
the latest algorithm. The results of each model in three sets of data are shown in Tables 1–3.
The total parameter quantity and FLOPs (unit: M) of each model are shown in Table 4. We
have bolded the optimal results for all experiments.

Table 1 shows that, on datasets with fewer samples, the improved algorithm is gener-
ally superior to the hardcore algorithm. EfficientNetB0 and DarkC-DCN have achieved
significant good accuracy by constructing new convolution structures. The Inception-v3
network achieved better results than the other three sets of hardcore networks, indicating
that the structure of Inception-v3 has a certain reference value. Both MVMNet and BCFS-
Net in this paper introduced a bidirectional attention mechanism. The results indicated
that the attention mechanism expands the differences between feature points, which greatly
improves the prediction results. The BCFS-Net proposed in this paper has a higher OA
value than the second-highest MVMNet by 2.4%. In terms of the AA value, it is 2.23%
higher than the second-highest MVMNet, and in terms of the kappa value, it should be 4.4%
higher than MVMNet. When there are fewer data samples, the effectiveness of Transformer
and its improved algorithm is not significant, which may be due to the need for more data
samples to support Transformer.

https://www.kaggle.com/datasets/ashutosh69/fire-and-smoke-dataset
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Table 1. Classification results of each model on the BoWFire dataset.

Model
BoWFire Dataset

OA AA Kappa

VGG16 [35] 0.8127 0.8000 0.6041

DenseNet121 [36] 0.8231 0.8222 0.6449

ResNet50 [37] 0.7500 0.733 0.4545

Xception [38] 0.7341 0.7333 0.4674

InceptionV3 0.8300 0.8220 0.6470

EfficientNetB0 0.8482 0.8444 0.6902

MVMNet 0.8660 0.8666 0.7321

DarkC-DCN 0.8518 0.8444 0.6846

BCFS-Net 0.8900 0.8889 0.7761

Transformer [1] 0.8352 0.8244 0.6535

TransFire [2] 0.8437 0.8433 0.6839

BCFS-Net 0.8900 0.8889 0.7761

Table 2. Classification results of each model on the outdoor fire dataset.

Model
Outdoor Fire Dataset

OA AA Kappa

VGG16 [35] 0.9039 0.9242 0.7890

DenseNet121 [36] 0.9408 0.9545 0.8753

ResNet50 [37] 0.9450 0.9590 0.8900

Xception [38] 0.9355 0.9545 0.8771

InceptionV3 0.9309 0.9545 0.8788

EfficientNetB0 0.9548 0.9646 0.9030

MVMNet 0.9541 0.9545 0.8717

DarkC-DCN 0.9470 0.9545 0.8735

BCFS-Net 0.9777 0.9646 0.8987

Transformer [1] 0.9463 0.9545 0.8722

TransFire [2] 0.9572 0.9646 0.9041

BCFS-Net 0.9777 0.9646 0.8987

Table 2 shows that, as the number of data samples increases, the prediction accuracy of
each model will be high, the new network structures such as EfficientNetB0 and MVMNet
are slightly higher than hardcore networks, and ResNet50 and EfficientNetB0 both achieve
good prediction results, possibly due to the residual strategy being more suitable for
the outdoor fire dataset. When OA obtains the optimal value, the kappa coefficient of
EfficientNetB0 is slightly higher than that of the BCFS-Net proposed in this paper. As
shown in the threshold ablation experiment in Section 4.4, the kappa value of BCFS-Net
also changes when the threshold setting is changed, with the optimal kappa value being
0.9163. From Table 2, we can see that the algorithm proposed in this paper has strong
competitiveness in both overall accuracy and average accuracy. Transformer and TransFire
also achieved good results in obtaining global semantic information on the outdoor fire
dataset. Among them, TransFire’s kappa is optimal on the outdoor fire data, and the
results show that, when the dataset sample size increases, Transformer’s global information
learning is better.
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Table 3. Classification results of each model on the Fire Smoke dataset.

Model
Fire Smoke Dataset

OA AA Kappa

VGG16 [35] 0.6870 0.6860 0.5300

DenseNet121 [36] 0.7533 0.7500 0.6250

ResNet50 [37] 0.7666 0.7666 0.6500

Xception [38] 0.7133 0.7133 0.5700

InceptionV3 0.7840 0.7560 0.6350

EfficientNetB0 0.7735 0.7733 0.6600

MVMNet 0.7807 0.7600 0.6400

DarkC-DCN 0.7842 0.7766 0.6650

BCFS-Net 0.8328 0.8166 0.7250

Transformer [1] 0.7546 0.7497 0.6200

TransFire [2] 0.7632 0.7600 0.6350

BCFS-Net 0.8328 0.8166 0.7250

Table 4. Total parameter quantity and FLOPs of each model.

Model
Fire Smoke Dataset

Params FLOPs

VGG16 29.53 M 14.82 M

DenseNet121 14.78 M 7.16 M

ResNet50 47.41 M 23.58 M

Xception 42.54 M 21.12 M

InceptionV3 44.10 M 21.94 M

EfficientNetB0 31.49 M 15.73 M

MVMNet 14.78 M 7.24 M

DarkC-DCN 106.22 M 53.06 M

Transformer 199.12 M 99.03 M

TransFire 217.53 M 103.38 M

BCFS-Net 14.50 M 7.24 M

From the experimental results in Table 3 above, it can be clearly seen that the BCFS-Net
proposed in this paper still achieved the best results in multiclassification tasks, and the
three sets of indicators were much higher than the other comparative models. This further
indicates that the bidirectional feature learning module (DFM) and weight selection module
(WSM) proposed in this paper have strong learning abilities on complex datasets.

Table 4 shows that the parameter quantity of the model proposed in this paper is
relatively small and close to DenseNet121 and MVMNet. However, the results on the three
datasets were much better than those of these two sets of models.

4.4. The Effect of Threshold T on BCFS-Net

The selection of deep features plays a decisive role in the final classification. The size
of the Euclidean distance can directly indicate the similarity between the feature points
corresponding to the convolution of each layer in the Inception V3 module. Different
threshold settings directly affect the quantity and quality of deep feature retention. To
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further test the impact of different thresholds on each data point, we compare the results of
the confusion matrix output by each model and the evaluation index.

Table 5 shows that, when the threshold is set to 0.5, all evaluation indicators achieve
the optimal results. Figure 5 shows that, when the thresholds are set to 0.2 and 0.3, various
results fluctuate greatly, affecting the prediction of fire and non-fire samples. When the
thresholds are equal to 0.4 and 0.5, the prediction of various results is stable, and the
accuracy of non-fire sample prediction reaches 90%.

Table 5. Classification results of different thresholds on the BoWFire dataset.

Model
BoWFire Dataset

OA AA Kappa

BCFS-Net (T = 0.6) 0.8450 0.8444 0.8650

BCFS-Net (T = 0.5) 0.8900 0.8889 0.7761

BCFS-Net (T = 0.4) 0.8660 0.8666 0.7321

BCFS-Net (T = 0.3) 0.8438 0.8444 0.6880

BCFS-Net (T = 0.2) 0.8231 0.8222 0.6449
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Table 6 shows that, when the threshold is set to 0.4, OA achieves the optimal result of
0.9777, indicating that this threshold is more suitable for overall accuracy on the outdoor
fire dataset. When the threshold is set to 0.3, AA achieves the optimal result of 0.9696 and a
kappa coefficient of 0.9163, indicating that this threshold is more suitable for the average
accuracy and comprehensive evaluation of the outdoor fire dataset. Figure 6 shows that,
the smaller the threshold is, the more accurate the fire image detection accuracy. When the
threshold is equal to 0.2, the fire image detection accuracy reaches 99%. When the threshold
is equal to 0.4, the more accurate the detection of non-fire images reaches 1.

Table 6. Classification results of different thresholds on the outdoor fire dataset.

Model
Outdoor Fire Dataset

OA AA Kappa

BCFS-Net (T = 0.6) 0.9450 0.9595 0.8900

BCFS-Net (T = 0.5) 0.9614 0.9646 0.9017

BCFS-Net (T = 0.4) 0.9777 0.9646 0.8987

BCFS-Net (T = 0.3) 0.9650 0.9696 0.9163

BCFS-Net (T = 0.2) 0.9532 0.9532 0.9186
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Table 7 shows that the optimal effect is achieved when the threshold is equal to 0.4.
When the threshold is equal to 0.2 or 0.3, the results of the three sets of indicators are lower
compared to T = 0.4, which is due to the retention of too many redundant feature points,
resulting in a decrease in accuracy. From threshold 0.4 to threshold 0.6, we can see that the
three sets of indicators gradually decrease due to the reduced selection of retained feature
points and the loss of some features. In Figure 7, it is also easy to see that the TB and Nor
accuracies gradually increase, and their accuracies are highest when the threshold is equal
to 0.4; when the threshold is equal to 0.5, the Smoke class achieves the optimal result.

Table 7. Classification results of different thresholds on the Fire Smoke dataset.

Model
Fire Smoke Dataset

OA AA Kappa

BCFS-Net (T = 0.6) 0.7945 0.7900 0.6850

BCFS-Net (T = 0.5) 0.8103 0.8067 0.7100

BCFS-Net (T = 0.4) 0.8328 0.8166 0.7250

BCFS-Net (T = 0.3) 0.7842 0.7833 0.6750

BCFS-Net (T = 0.2) 0.7990 0.7990 0.6950
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4.5. The Impact of Various Strategies on ResNet18 and Vgg16

To verify the applicability of the proposed strategy in this paper, we introduce a
bidirectional feature learning module (DFM) and a weight selection module (WSM) into
the ResNet18 network and the Vgg16 network. ResNet18 (DFM) represents the use of only
bidirectional feature learning modules, and ResNet18 (WSM) represents the use of only
weight selection modules. Vgg16(DFM) represents the use of only bidirectional feature
learning modules, Vgg16(WSM) represents the use of only weight selection modules. The
specific experimental results are shown in Table 8.
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Table 8. The classification results of the ResNet18 network in three datasets using various strategies.

Model
BoWFire Dataset Outdoor Fire Dataset Fire Smoke Dataset

OA AA Kappa OA AA Kappa OA AA Kappa

RseNet18 0.8214 0.8222 0.6428 0.945 0.9595 0.8900 0.7350 0.7266 0.5900

RseNet18 (DFM) 0.8482 0.8444 0.6902 0.9614 0.9646 0.9016 0.7536 0.7433 0.6150

RseNet18 (WSM) 0.8300 0.8222 0.6470 0.9491 0.9646 0.9044 0.7501 0.7533 0.6300

Vgg16 0.8127 0.8000 0.6041 0.9039 0.9242 0.7890 0.6870 0.6860 0.5300

Vgg16 (DFM) 0.8371 0.8333 0.6583 0.9342 0.9545 0.8821 0.7344 0.7533 0.6350

Vgg16 (WSM) 0.8293 0.8222 0.6426 0.9211 0.9545 0.8761 0.7135 0.7226 0.5850

Table 8 shows that, in the BoWFire dataset, the results of DFM’s various indicators
are more uniform than those of WSM, proving that DFM can better learn features from
datasets with fewer samples. In the outdoor fire dataset, we can see that DFM has better
OA metrics, while WSM has better kappa metrics, and both groups have better results than
traditional ResNet18. On the Fire Smoke dataset, the experimental results of WSM were
slightly better than those of DFM. The above experimental results for improving ResNet18
show that both sets of strategies proposed in this paper can increase the prediction accuracy
of the model. By comparing the DFM and WSM bands in this article with Vgg16, it can be
seen that DFM performs better. Similarly, on all three datasets, Vgg16 (DFM) and Vgg16
(WSM) outperformed Vgg16 in all indicators. From the improved Vgg16 algorithm, we
further demonstrate that the DFM and WSM strategies proposed in this paper are feasible.

4.6. Feasibility of Various Strategies in the BCFS-Net Algorithm

Different strategies learn different semantic information of images. The shallow and
deep features retained simultaneously are also different. To further test whether the
proposed strategy has a learning ability on three sets of open datasets, this section discusses
the two sets of strategies proposed in the BCFS-Net algorithm. To conveniently obtain the
advantages and disadvantages of the strategy proposed in this paper, this section uses
a polar pie chart (Figure 8) and the loss function of the training process (Figure 9). The
visualization results on specific datasets are shown in Figure 8. Among them, “No_R”
indicates that the BCFS-Net algorithm does not use a bidirectional feature learning module,
and “No_S” indicates that the BCFS-Net algorithm does not use a weight selection module.

From the first set of polar pie charts in Figure 8, it can be seen that using a weight
selection module is more effective than using a bidirectional feature learning module.
The results of the polar pie chart presented in the outdoor fire dataset indicate that both
strategies have similar feature learning abilities and that both have certain learning abilities.
In the third dataset, the bidirectional feature learning module is superior to the weight
selection module. From the above three sets of polar pie charts, it can be seen that the two
strategies proposed in this paper work best when used together. Therefore, this further
proves the importance of the model for feature learning and feature selection.

From Figure 9, it can be seen that, when the BCFS-Net model uses the bidirectional
feature learning module and weight selection module, the loss performance is lower.
However, due to the large and relatively simple number of data samples in the outdoor
fire dataset, there is not much difference in the training process between using two sets
of strategies. However, the Fire Smoke dataset is the most complex, with significant loss
differences when both BCFS-Net modules are used. The training process loss can indicate
that the strategy proposed in this article performs better compared to complex data.
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5. Summary and Outlook

We propose a new deep learning algorithm, BCFS-Net, in this paper. The main task of
this algorithm is to obtain richer shallow features through bidirectional feature learning
modules and then use the weight selection module to filter deep features. This algorithm
proves that the BCFS-Net algorithm can be better suited for fire image classification tasks
on three datasets. In the deep features, we preserve semantically rich feature points, but
it will lose some semantic information. Therefore, in the next step, we will relearn the
lost features and obtain some semantic features to fuse with the retained deep features.
Through this method, we will further improve the detection accuracy of the algorithm for
fire image classification tasks.
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