
fgene-11-587243 November 16, 2020 Time: 15:13 # 1

ORIGINAL RESEARCH
published: 20 November 2020

doi: 10.3389/fgene.2020.587243

Edited by:
Yang Zhao,

Nanjing Medical University, China

Reviewed by:
Lihong Huang,

Fudan University, China
Yongyue Wei,

Nanjing Medical University, China

*Correspondence:
Ping Zeng

zpstat@xzhmu.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 25 July 2020
Accepted: 26 October 2020

Published: 20 November 2020

Citation:
Xiao L, Yuan Z, Jin S, Wang T,

Huang S and Zeng P (2020)
Multiple-Tissue Integrative

Transcriptome-Wide Association
Studies Discovered New Genes

Associated With Amyotrophic Lateral
Sclerosis. Front. Genet. 11:587243.

doi: 10.3389/fgene.2020.587243

Multiple-Tissue Integrative
Transcriptome-Wide Association
Studies Discovered New Genes
Associated With Amyotrophic Lateral
Sclerosis
Lishun Xiao1†, Zhongshang Yuan2†, Siyi Jin1, Ting Wang1, Shuiping Huang1,3 and
Ping Zeng1,3*

1 Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China, 2 Department of Biostatistics,
School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China, 3 Center for Medical Statistics
and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China

Genome-wide association studies (GWAS) have identified multiple causal genes
associated with amyotrophic lateral sclerosis (ALS); however, the genetic architecture
of ALS remains completely unknown and a large number of causal genes have yet
been discovered. To full such gap in part, we implemented an integrative analysis
of transcriptome-wide association study (TWAS) for ALS to prioritize causal genes
with summary statistics from 80,610 European individuals and employed 13 GTEx
brain tissues as reference transcriptome panels. The summary-level TWAS analysis
with single brain tissue was first undertaken and then a flexible p-value combination
strategy, called summary data-based Cauchy Aggregation TWAS (SCAT), was proposed
to pool association signals from single-tissue TWAS analysis while protecting against
highly positive correlation among tests. Extensive simulations demonstrated SCAT can
produce well-calibrated p-value for the control of type I error and was often much more
powerful to identify association signals across various scenarios compared with single-
tissue TWAS analysis. Using SCAT, we replicated three ALS-associated genes (i.e.,
ATXN3, SCFD1, and C9orf72) identified in previous GWASs and discovered additional
five genes (i.e., SLC9A8, FAM66D, TRIP11, JUP, and RP11-529H20.6) which were not
reported before. Furthermore, we discovered the five associations were largely driven by
genes themselves and thus might be new genes which were likely related to the risk of
ALS. However, further investigations are warranted to verify these results and untangle
the pathophysiological function of the genes in developing ALS.

Keywords: transcriptome-wide association study (TWAS), amyotrophic lateral sclerosis (ALS), genome-wide
association studies (GWAS), brain tissue, type I error control

BACKGROUND

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is an adult-onset
progressive and fatal neurodegenerative disease (Kiernan et al., 2011). Although its prevalence
rate is not high worldwide (Vazquez, 2008; Marin et al., 2017; Mehta et al., 2018), ALS can lead
to severe clinical consequence (Chio et al., 2009) and economic burden (Larkindale et al., 2014;
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Gladman and Zinman, 2015). One of the greatest challenges with
regards to ALS is that few effective therapeutic interventions have
been confirmed and nearly no cure is available in clinic (Mehta
et al., 2018; Zeng et al., 2019a). In addition, it is evaluated that the
ALS cases across the globe will elevate up to∼400K in the coming
20 years owing to aging of the population (Arthur et al., 2016),
which will further aggravate the socioeconomic threat of ALS.

Prior work has revealed that ALS is highly heritable, with
the heritability ranging from 0.52 (95%CI 0.43–0.62) for the
ordinary population, to 0.37 (95%CI 0.20–0.54) for those without
genetic risks according to population-based studies, and to 0.66
(95%CI 0.59–0.74) based on mother-daughter pairings (Ryan
et al., 2019) or 0.61 (95%CI 0.38–0.78) in terms of twin studies
(Al-Chalabi et al., 2010). Therefore, understanding the genetic
etiology of ALS and identifying risk genes are crucial for early
prevention and also have the potential to discover effective
therapeutic targets. Indeed, in the past decade dozens of genome-
wide association studies (GWAS) have identified multiple single
nucleotide polymorphisms (SNPs) and genes causally associated
with ALS (McMahon et al., 2019) (Table 1 and Supplementary
Table S1). However, the genetic architecture of ALS remains
largely unknown and the functional influences of those genetic
variants are also not completely clear. For example, the SNP-
based heritability estimated in GWAS is only 21%, which is much
smaller than that reported above (Keller et al., 2014), implying a
large amount of causal genes have not yet been identified and the
effort to find causative genes for ALS should continue.

The importance of gene expression regulation in complex
diseases motivates us to apply novel statistical tools prioritizing
causal genes of ALS through the integration of expression
quantitative trait loci (eQTL) into GWAS (Nica et al., 2010;
Nicolae et al., 2010; GTEx Consortium, 2015; Li et al., 2016;
Wen et al., 2016; GTEx Consortium, 2017; Mancuso et al., 2019).
Transcriptome-wide association study (TWAS) is exactly one of
such approaches popular in genomic integrative analysis (Gusev
et al., 2016; Hu et al., 2019; Mancuso et al., 2019; Wainberg et al.,
2019). Methodologically, TWAS can be viewed as a relatively
independent two-stage inference procedure to discover causal
genes (Figure 1). Briefly, in the first stage weights (i.e., the
joint effect sizes) of cis-SNPs of a given gene are computed
from external tissue-related transcriptome reference datasets; and
then the association between the imputed expression and the
disease of interest is examined for that gene in the second stage.
The original TWAS analysis needs large scale individual-level
data sets (Gusev et al., 2016), which limits its applicability due
to unavailability of such data sets because of privacy concerns
in data sharing among various research groups (Gusev et al.,
2016; Pasaniuc and Price, 2016). Fortunately, such limitation
is already eliminated with the development of summary-level
TWAS (Gusev et al., 2016; Barbeira et al., 2018), for which
only pre-estimated weights of QTL and summary statistics of
GWAS are necessary.

Moreover, because it has been shown that spurious
associations may be generated if integrating gene expression
from tissues that are not biologically related to the disease
(Wainberg et al., 2019), a strongly recommended strategy
in TWAS analysis is that one should calculate weights of

cis-SNPs with expression measurements from the most relevant
tissues in the first stage. For instance, the breast-cancer TWAS
analysis employs transcriptome datasets of the breast tissue (Wu
et al., 2018) and the prostate-cancer TWAS analysis applies
transcriptome datasets of the prostate tissue (Mancuso et al.,
2018; Wu et al., 2019). Therefore, it is the natural choice of brain
tissues when implementing TWAS for ALS. There are 13 GTEx
brain tissues that can be employed as reference transcriptome
panels (GTEx Consortium, 2015, 2017) (Table 2). The rich
transcriptome datasets offer an unprecedented opportunity to
comprehensively integrating QTL information into the GWAS
of ALS. In the meantime, they also propose a great statistical
challenge for such integration.

Performing ALS TWAS analysis from one brain tissue
to another and then adjusting for multiple comparisons
is a conventional approach. However, doing this may be
underpowered because of the multiple testing burden; and such
a manipulation is not optimal as it ignores useful information
of shared eQTLs across brain tissues (GTEx Consortium, 2017).
Therefore, it is important to integrate associations from all
available brain tissues in the TWAS analysis of ALS with
a more efficient manner, which would have the potential to
improve power and discover newly genes associated with ALS.
However, in terms of our literature view there is little existing
work on how to aggregate such evidence efficiently when
only summary-level eQTL and GWAS marginal statistics are
utilizable. It is hence desirable to construct feasible omnibus tests
to handle this problem.

The Fisher’s method (Fisher, 1934), one commonly used
omnibus test, may be the first choice. Unfortunately, the Fisher’s
method is only valid for independent multiple tests and thus
cannot be employed due to highly positive correlation among
individual TWAS tests (see simulations below for details). In fact,
as we will demonstrate later, the Fisher’s method is overinflated
and can lead to too many spurious associations when the
TWAS test statistics are not independent. Alternatively, one
may take the minimum p-value as the significance measure
(Conneely and Boehnke, 2007). However, due to the same
issue of unknown positive dependence, the null distribution
of the minimum p-value may be extremely complicated and
the computation is often time-consuming since numerical
permutation/bootstrap is involved (Conneely and Boehnke, 2007;
Sun and Lin, 2019).

Therefore, it is of substantial interest to develop omnibus
tests that are robust against correlation. To achieve this
objective, herein we propose a novel p-values integrative strategy
called summary data-based Cauchy Aggregation TWAS (SCAT).
Compared to previous approaches, SCAT owns an attractive
strength that it takes the summary of a set of p-values as
test statistic and evaluates the significance analytically without
the knowledge of correlation structure. Consequently, SCAT is
extraordinarily flexible and computationally fast. With extensive
simulation studies we demonstrated that SCAT can produce well-
calibrated p-value for the control of type I error and is often much
more powerful compared with single-tissue TWAS analysis.
Finally, using SCAT we discovered several new ALS-associated
genes that would be missed by existing statistical strategies.
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TABLE 1 | Previous association studies for ALS in terms of the GWAS catalog.

Year Pop cases/controls (discover + replication) m References

2007 EUR 276/271 3 Schymick et al., 2007

2007 EUR 461/450 + 876/906 1 Van Es et al., 2007

2007 EUR 221/211 + 737/721 1 Cronin et al., 2007

2008 EUR 737/721 + 1,030/1,195 3 Van Es et al., 2008

2009 EUR 958/932 + 309/404 1 Cronin et al., 2009

2009 EUR 1,821/2,258 + 538/556 14 Landers et al., 2009

2009 EUR 2,323/9,013 + 2,532/5,940 3 van Es et al., 2009

2010 EUR 405/497 4 Laaksovirta et al., 2010

2010 EUR 4,857/8,987 0 Shatunov et al., 2010

2010 EUR 639/6,257 + 183/961 2 Kwee et al., 2012

2013 EUR 4,243/5,112 19 The Alsgen Consortium, 2013

2013 EUR 6,100/7,125 + 2,074/2,556 3 Fogh et al., 2013

2014 EUR 4,377 + 435/14,431 + 4,056/3,958 10 Diekstra et al., 2014

2015 EUR 25/1,179 1 McLaughlin et al., 2015

2016 EUR 12,577/23,475 + 2,579/2,767 4 van Rheenen et al., 2016

2018 EUR 20,806/59,804 + 4,159/18,650 10 Nicolas et al., 2018

2019 EUR 4,244/3,106 1 Dekker et al., 2019

2013 CHI 506/1,859 + 706/1,777 4 Deng et al., 2013

2013 CHI 4,243 (age of ALS on-set) 15 The Alsgen Consortium, 2013

2013 CHI 250/250 174 Xie et al., 2014

2016 CHI 94/376 1 Chen C.J. et al., 2016

2017 CHI 1,234/2,850 + 576/683 7 Benyamin et al., 2017

Pop denotes which populations the GWAS was performed on, with EUR representing the European population and CHI representing the Chinese Han population; the
third column is the sample size of GWAS in the discover stage and in the replication stage if conducted; m denotes the number of unique genes mapped by associated
SNPs; these results are overviewed in terms of the GWAS catalog at https://www.ebi.ac.uk/gwas (until 2020-02-02). Of note, some of GWASs had only limited sample
sizes, which might influence the validity of the discovered genetic variants and mapped genes in these studies. Therefore, the associations need to interpret in caution.

MATERIALS AND METHODS

GWAS Summary Statistics for ALS
We obtained marginal summary statistics (e.g., Z scores) of
ALS from the largest ALS GWAS to date (Nicolas et al.,
2018). This study included several previous ALS cohorts
such as the work of van Rheenen et al. (2016). For each
SNP the logistic regression was first implemented per cohort
with individual-level genotypes while incorporating several top
principal components, age, and gender as covariates. Then,
the inverse-variance weighted fixed-effect meta-analysis was
implemented to pool association results across cohorts. Finally,
after quality control approximately 8.6 million SNPs on 20,806
cases and 59,804 controls of European ancestry were left for
our TWAS analysis.

TWAS Analysis With Single Brain Tissue
To be self-contained, we first introduce TWAS approach for
individual-level dataset. Suppose that G is an n × m matrix
of genotypes of cis-SNPs for a gene, n is the sample size for
ALS and m is the number of genetic variants and generally
changes from gene to gene; E is an n-vector for unmeasured
gene expression in the ALS GWAS and y is an n-vector of
binary variable for ALS cases and controls. In addition, assume
g is a d × m genotype matrix of cis-SNPs and e is a d-vector
of gene expression from one of the GTEx brain tissues for

the same gene, with d the sample size of the reference panel.
The individual-level TWAS analysis can be implemented as

stage 1 : _weights estimation with genetic prediction models
_e = fw(gw) ⇒ ŵ
stage 2: _ gene expression imputation and association analysis
_logit(µ) = Êθ with Ê = Gŵ

(1)
where w = (w1, w2, . . ., wm) is the m-vector of effect
sizes for cis-SNPs and can be estimated (denoted by ŵ)
with some genetic prediction model (denoted by f w) (Zeng
and Zhou, 2017); ε is a normal residual and µ is the
expectation of y; and θ is the effect size for imputed
gene expression. In the TWAS analysis we aim to test
for the null hypothesis H0: θ = 0. It is seen that TWAS
bridges the gap between QTL and GWAS in a conceptually
simple fashion.

FUSION: A Summary-Level TWAS With
Single Tissue
When only summary-level datasets are available (as the case
in our analysis of ALS), under the condition of no association
between SNP and ALS we have{

ẑALS _∼ MVN(0, R)

ẑALSŵT _∼ MVN
{

0, ŵRŵT} (2)
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FIGURE 1 | Schematic framework of TWAS with FUSION and SCAT based on only summary-level datasets and reference panel for linkage disequilibrium (LD)
structure of SNPs. TWAS can be viewed to be a relatively independent two-stage inference procedure: the first stage is to estimate weights for cis-SNPs with GTEx
brain transcriptome reference panel (the top panel); the second stage is to examine causal association between genes and ALS with weights obtained from the first
stage (the bottom panel).

where ẑALS is an m-vector of marginal Z scores of cis-SNPs
and often generated with single SNP regression (Zeng et al.,
2015); MVN denotes the multivariate normal distribution, and
R is the unknown LD correlation matrix among cis-SNPs and
can be approximately estimated with reference datasets such as
1000 Genomes Project (The 1000 Genomes Project Consortium,
2015). With these in hand we define the TWAS statistic as

Zt = {ẑALSŵT
}{ŵRŵT

}
−

1
2 (3)

The p-value of Zt can be easily obtained since it asymptotically
follows a standard normal distribution. The above TWAS
analysis is implemented through the FUSION software
(Gusev et al., 2016).

Summary-Level TWAS for
Multiple-Tissues With Known Correlation
Structure
When the correlation structure among gene expressions is known
(but it is in fact unknown), a summary-level TWAS approach
combining FUSION results of multiple tissues can be designed
assuming no association between the gene and ALS across tissues

Q _ = ZC−1ZT
∼ χ2

T (4)

where Z = (Z1, . . ., ZT) approximately follows MVN(0, C) with C
the correlation matrix of gene expressions from T tissues. The
above method is also called multiXcan (Barbeira et al., 2019)
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TABLE 2 | ALS-associated genes identified by SCAT or FUSION with 13 GTEx brain tissues.

Tissue N p0 p1 (%) FAM66D C9orf72 TRIP11 RP11-
529H20.6

ATXN3 JUP SCFD1 SLC9A8

Amygdala 81 1,799 0 (0.00) 2.85E-1

Anterior cingulate cortex BA24 102 2,653 4 (0.15) 1.20E-1 4.11E-3 6.90E-4

Caudate basal ganglia 126 3,586 1 (0.03) 2.71E-8 3.06E-1

Cerebellar hemisphere 113 4,327 6 (0.14) 3.36E-1 3.93E-10 2.01E-1 2.37E-1 3.45E-1 7.25E-4 4.76E-2

Cerebellum 137 5,752 4 (0.07) 4.97E-4 5.86E-3 1.02E-2 1.15E-3 3.73E-1

Cortex 119 3,943 3 (0.08) 7.79E-3 6.41E-3 2.00E-1 1.22E-1 2.00E-1

Frontal cortex BA9 104 3,080 1 (0.03) 5.87E-1 3.84E-16 1.88E-1

Hippocampus 99 2,245 1 (0.04) 3.66E-1 1.12E-4 8.61E-2 8.61E-2

Hypothalamus 98 2,257 3 (0.13) 4.94E-1 3.65E-1 3.65E-1 1.82E-2 1.55E-4 6.40E-3

Nucleus accumbens basal ganglia 114 3,172 2 (0.06) 5.53E-1 3.32E-24 4.91E-3

Putamen basal ganglia 98 2,766 1 (0.04) 6.04E-7 2.07E-1

Spinal cord cervical c-1 76 1,974 2 (0.10) 4.97E-1 1.26E-7

Substantia nigra 70 1,568 2 (0.13)

SCAT 11469 8 (0.07) 4.22E-2 1.08E-22 3.49E-2 4.10E-2 3.68E-2 4.22E-2 1.20E-3 4.22E-2

N is the sample size of gene expression in each tissue; p0 denotes the number of converged genes with heritability estimation, p1 (%) is the number (or proportion) of
associated genes that have FDR < 0.05 in each tissue before adjustment of the 13 GTEx brain tissues.

and provides an omnibus test for the combination of effect in
any brain tissue while accounting for correlation. We refer to
the test shown in (4) as the oracle TWAS. However, due to
the lack of transcriptome reference panels (The 1000 Genomes
Project Consortium, 2015), C is often unknown or cannot be
estimated accurately from expression datasets with small sample
sizes (Gusev et al., 2016; GTEx Consortium, 2017).

Combination of TWAS via the
Aggregated Cauchy Association Test
We here introduce how SCAT can be adopted in our ALS TWAS
analysis. First, we separately implement FUSION for each brain
tissue and yield Zt and pt (t = 1, 2, . . ., T; with T = 13 here); as
expected, these pts (or Zts) are highly correlated (see also below)
(Brown, 1975; Kost and McDermott, 2002; Poole et al., 2016;
Heard and Rubin-Delanchy, 2018). As a result, as mentioned
before the Fisher’s method, which assumes independent tests,
is not appropriate. We instead apply SCAT which allows us to
aggregate multiple potentially dependent p-values obtained from
multiple FUSION analyses into a single well-calibrated p-value
that can maintain the type I error correctly. The pooled p-value of
SCAT follows a Cauchy distribution regardless whether p-values
are correlated or not (Liu et al., 2019; Liu and Xie, 2019). Briefly,
with SCAT we have

TSCAT _ =
∑T

t = 1 -t tan
{
( 1

2 − pt)π
}

pTSCAT _ = 1
2 − arc tan

{
TSCAT/(

∑T
t = 1 -t)

}
/π

(5)

where -t denotes the non-negative weight for each pt with∑T
t = 1 -t = 1, and assume that -t is independent of pt . When

no prior information is available, equal weights are utilized.
Because SCAT only takes a group of p-values as input and no
any dependence structure is required, its implementation is thus
rather straightforward and fast.

Numerical Simulations
We implement simulation studies to assess the performance of
SCAT and compare it with the Fisher’s method. As described
before because both the two methods used only p-values
as input; we thus start our simulations by generating a
series of independent or non-independent p-values. This is
also the simulation framework used in previous work (Liu
and Xie, 2019). Specifically, we first obtained the correlation
matrix of Z values of FUSION (i.e., the C matrix; shown in
Supplementary Figure S1) and generated a 13-dimentional
multivariate random variable which followed MVN(µ, C).
Then, we yielded the p-value for each marginal random
variable by assuming it followed a standard normal distribution.
Finally, we combined these p-values with SCAT or the
Fisher’s method.

We set µ = 0 when evaluating the type I error
control, but randomly sampled µ from an independent normal
distribution with mean zero and variance 2.5 when assessing
the statistical power. A total of 106 or 103 replications were
generated for type I error control and power evaluation
respectively. Furthermore, to match the application in real-
life datasets — not all genes were identified to be cis-
heritable across all brain tissues with the current sample
sizes of transcriptome datasets (see Supplementary Figure S2
for more information) — in each replication of the power
assessment we randomly selected at least five but at most
eleven tissues to be missing. Doing this was equivalent
to generating missing values in each group of marginal
p-values.

In the present analysis genes with false discover rate (FDR)
(Benjamini and Hochberg, 1995) less than 0.05 were defined to
be associated genes. All analyses were carried out with the R
software (version 3.6.2); and the codes to reproduce simulations
as well as the FUSION results of ALS can be found at https:
//github.com/biostatpzeng. In addition, since we only employed
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summary-level genetic datasets that can be publicly available;
therefore, additional ethical review was not needed for our study.

RESULTS

Type I Error Control and Power
Evaluation
It is observed that both the Fisher’s method and SCAT can
correctly control the type I error if the p-values are independent
(Figures 2A,B). However, in the presence of positive dependence
among p-values, the Fisher’s method fails to maintain the
type I error control and is rather liberal (Figures 2C,D). In
contrast, SCAT is robust to the positive correlation structure
and still displays a desirable behavior on the control of type
I error (Figures 2C,D). Because of the failure in the type
I error control, in the following we no longer consider the
Fisher’s method.

The estimated statistical power is shown in Figures 2E,F.
Here, several pronounced observations need to emphasize.
First, SCAT substantially outperforms any individual one-tissue
FUSION in our simulation settings (Figure 2E vs. Figure 2F).
Second, as anticipated, ignoring correlation among p-values can
indeed lead to power reduction. For example, the oracle TWAS
(denoted by oracle in Figure 2F), which considers the true
correlation among the test statistics, has an approximately 10.1%
higher power compared with SCAT (denoted by SCAT13 in
Figure 2F), and the advantage of the oracle TWAS would be
more evident if less FUSION analyses are combined by SCAT
(e.g., oracle vs. SCAT4 or oracle vs. SCAT8 in Figure 2F).
However, as aforementioned, the oracle TWAS cannot be
applicable due to unavailability of correlation structure in
practice, while SCAT is a universal combination approach
without such limitation.

Third, SCAT that combines FUSION with a larger set of
tissues is often much more powerful than that contains a smaller
set of tissues (e.g., SCAT13 vs. SCAT8 or SCAT4; here the number
attached represents the number of tissues used in the SCAT
analysis, with a greater number indicating more tissues included);
in the extreme case where only one tissue in each group (i.e.,
SCAT1), SCAT reduces to FUSION and exhibits the similar
behavior to FUSION. Note that, this simulation is also equivalent
to the case where missing p-values emerge. Nevertheless, SCAT
is still better than any FUSION analysis with one tissue as long as
more than two significant tissues are contained. Fourth, however,
it is not necessarily the case that SCAT can always improve the
power. For example, we find SCAT would encounter a loss of
power if some of the combined individual FUSION analyses are
non-significant (Supplementary Figure S3). Fifth, it is shown
that SCAT would loss the power as the increase in the correlation
under various correlation structures (Supplementary Figure S4).
For instance, SCAT has a power of 0.241, 0.317, 0.427, or 0.572
when the correlation is 0.9, 0.6, 0.3 or 0 in the exchangeable
structure (Supplementary Figure S4A). In addition, as can be
expected, different correlation structures among the test statistics
have various influences on the power of SCAT (Supplementary
Figures S4A–C).

Associated Genes With ALS Discovered
in Previous GWASs
In terms of the GWAS Catalog1, most of the ALS GWASs (17
out of 22) were performed on European individuals (Table 1).
Totally, there are 313 SNP association pairs discovered across
all chromosomes, especially in chromosomes 1 (i.e., 19 SNPs),
2 (i.e., 19 SNPs), and 9 (i.e., 21 SNPs) (Figures 3A,B). Those
genetic variants are mapped to 253 unique genetic regions,
among which 25 are located within intergenic (Figure 3C). In
particular, C9orf72 — a famous risk gene of ALS (Renton, 2011;
Byrne, 2012; Garcia-Redondo, 2013; Diekstra et al., 2014; Chen
Y. et al., 2016) — is the most frequent gene. The remaining genes
with high frequency include UNC13A and CPNE4 (Figure 3C).

Associated Genes With ALS Discovered
by FUSION and SCAT
Now we applied FUSION to ALS using 13 GTEx brain tissues as
reference transcriptome datasets and then combined the results
with SCAT for the overall significance. The correlation among
gene expressions is displayed in Supplementary Figure S5.
A total of 11,469 unique genes are analyzed but only 361
overlapped genes emerging in all the 13 GTEx brain tissues. It
is empirically demonstrated that the p-values of FUSION among
various GTEx brain tissues exhibit highly positive dependency
(Supplementary Figure S5), which, together the unavailability
of correlation information makes nearly all previous p-values
combined methods cannot be directly utilized.

For each GTEx brain tissue the number of genes with
FDR < 0.05 (before adjustment of the issue of multiple tissues)
is shown in Table 2 and Supplementary Figure S6A. The full
results of TWAS for ALS are shown in Figure 4. It is seen that
more genes are discovered in cerebellar hemisphere (i.e., 6 genes),
following by anterior cingulate cortex BA24 and cerebellum (e.g.,
4 genes for both tissues). Again, we observe that C9orf72 is
discovered to be associated with ALS in almost brain tissues
which previously had been kept after screening of heritable genes
in FUSION. However, if further considering the issue of multiple
testing, many of these genes identified by single-tissue FUSION
would be non-significant, leaving only two statistically significant
genes (i.e., SCFD1 and C9orf72).

The adjusted associations are displayed in Table 2 and
Supplementary Figure S6B. Here, a total of eight genes are
found by SCAT (FDR < 0.05), among which three (i.e., SCFD1
with FDR = 0.001, ATXN3 with FDR = 0.04 and C9orf72
with FDR = 1.08E-22) are previously identified (Supplementary
Table S1), while five (i.e., SLC9A8 with FDR = 0.04, FAM66D with
FDR = 0.04, TRIP11 with FDR = 0.03, JUP with FDR = 0.04 and
RP11-529H20.6 with FDR = 0.04) are not. Except for FAM66D
(antisense) and RP11-529H20.6 (sense overlapping), all others are
protein-coding genes (Supplementary Table S2). Furthermore,
we find that there are no significant SNPs (with p < 5.00E-
8) included within any of these five genes (Supplementary
Figure S7). Thus, in our analysis SLC9A8, FAM66D, TRIP11, JUP,

1https://www.ebi.ac.uk/gwas
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FIGURE 2 | Type I error control (A–D) and Estimated statistical power (E,F) in the simulation studies. In (A,B), the correlation matrix was independent; in panels
(C,D), the correlation matrix was specified with the matrix shown in Supplementary Figure S2; in (E), the clustered lines with various colors represent the 13 types
of FUSION analysis with one tissue and cannot be clearly separated; in (F), the number attached by SCAT indicates various tissues included; oracle denotes the
oracle TWAS approach with the matrix shown in Supplementary Figure S2; because the inclusion of all 13 tissues in the oracle TWAS would result in 100%
power; thus, here we only considers three tissues that were randomly selected in the oracle TWAS.

and RP11-529H20.6 can be deemed to be newly genes that are
likely associated with ALS.

DISCUSSION

Given the severe health threat and little knowledge of ALS,
persistent work should be done to explore genetic and
environmental risk factors related to ALS. The present study is
one of such efforts with the aim to discover newly causal genes for
ALS. To achieve this goal, we conducted the TWAS analysis and
integrated association signals from multiple GTEx brain tissues to
improve power by borrowing the idea of p-values combination.
As demonstrated before, the main challenge in our TWAS
analysis of ALS emerges in two aspects. First, multiple brain
tissues were involved and the statistics of FUSION across tissues
exhibited highly positive correlation; second, the dependency
structure was unknown in practice because only summary-level
statistics results can be available. Those difficulties lead to the
failure of the Fisher’s method and also hamper the use of
other commonly employed methods that can combine dependent
p-values such as the Brown’s method (Brown, 1975), the Kost’s
method (Kost and McDermott, 2002) and some tests proposed
recently (Barnett et al., 2017; Gaynor et al., 2019; Sun et al., 2019;

Sun and Lin, 2019), which typically require known covariance
among p-values.

Our TWAS analysis relies on the newly flexible statistical
framework of SCAT for hypothesis testing. Compared with
FUSION (i.e., the summary-level TWAS analysis with one tissue
each time), SCAT is more efficient as it aggregates individual
association signals. With simulation studies we revealed that
SCAT produced well-calibrated p-value for type I error control
and was often much more powerful to identify associated
signals across various scenarios compared with FUSION with
only single tissue. Using SCAT we replicated three GWAS-
discovered genes including SCFD1 found in van Rheenen et al.
(2016) and Nicolas et al. (2018), ATXN3 identified in Nicolas
et al. (2018) and C9orf72 found in multiple previous GWASs
(Supplementary Table S1). Among those C9orf72 is a well-
known genetic mutation of ALS previously detected in both
European population (The Alsgen Consortium, 2013; Diekstra
et al., 2014; McLaughlin et al., 2015; van Rheenen et al., 2016;
Nicolas et al., 2018; Dekker et al., 2019) and East Asian population
(Benyamin et al., 2017).

More importantly, with SCAT we identified five newly
ALS-associated genes that were otherwise missed by existing
statistical strategies, including SLC9A8, FAM66D, TRIP11,
JUP, and RP11-529H20.6. Our new findings are also partially
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FIGURE 3 | Summary results for ALS-associated SNPs and mapped genes identified in previous GWASs. (A) The distribution for associated SNPs across all 22
chromosomes; (B) The p-values of circle Manhattan plot of associated SNPs for significance; (C) The distribution for genes with high frequency.

supported by previous studies. First, in the molecular level
one typical pathological hallmark for neurodegeneration of
ALS (e.g., tau, amyloid, and beta-protein precursor) is the
change in cell cycle control and progression, which can be
regulated by SLC9A8 by inhibiting Na+/H+ exchanger activity
in epithelia (Hu et al., 1998; Orlowski and Grinstein, 2004).
In the population level, SLC9A8 exhibits widely pleiotropic
influence on chronic inflammatory diseases including
ankylosing spondylitis, Crohn’s disease, psoriasis, primary
sclerosing cholangitis, and ulcerative colitis (Stuart et al.,
2010; Ellinghaus et al., 2016); in addition, SLC9A8 is also
associated with psoriasis (Stuart et al., 2010), gut microbiota
(beta diversity) (Wang et al., 2016) and multiple sclerosis
(International Multiple Sclerosis Genetics Consortium, 2013).

Second, TRIP11 can provide instruction for generating a type
of protein known as Golgi microtubule-associated protein 210
(GMAP-210) (Infante et al., 1999). This protein is found in
the Golgi apparatus, a cell structure in which newly produced
proteins are modified so they can be activated. On the other hand,
the depletion of Golgi matrix proteins can result in an abnormal,
fragmented Golgi morphology, which has been observed in
multiple neurodegenerative diseases including ALS (Fujita and
Okamoto, 2005), suggesting that the fragmentation of Golgi
apparatus may be related to the neuronal degeneration of ALS.
In population-based studies, TRIP11 is identified to be associated

with anthropometric traits including height (Gudbjartsson et al.,
2008; Lettre et al., 2008; Lango Allen et al., 2010; Wood et al.,
2014; He et al., 2015; Tachmazidou et al., 2017; Akiyama et al.,
2019) and waist circumference adjusted for body mass index
(Shungin et al., 2015; Graff et al., 2017; Justice et al., 2017), which
are in turn believed to be relevant to the development of ALS
(Desport et al., 1999; Jawaid et al., 2010; Paganoni et al., 2011;
Shimizu et al., 2012; O’Reilly et al., 2013; Reich-Slotky et al., 2013;
Calvo et al., 2017; Peter et al., 2017; Zeng et al., 2019b).

Third, JUP can regulate plakoglobin, a protein plays an
important role in signaling within cells as part of the Wingless/Int
(Wnt) pathway (Asimaki et al., 2007). The Wnt is a key
pathway involved in neural development during embryogenesis
(Wang and Wynshaw-Boris, 2004; Harrison-Uy and Pleasure,
2012) and in the maintenance of neuronal homeostasis (Ille
and Sommer, 2005; Zhang et al., 2011). In particular, the
perturbations of the Wnt pathway have been shown to have
a correlation to neurological disorders (De Ferrari and Moon,
2006) as well as neurodegenerative diseases (De Ferrari et al.,
2003; Inestrosa and Arenas, 2010).

In addition, in terms of BioSystems SLC9A8 and TRIP11
belong to the pathway of GO 0000139 Golgi membrane and
JUP belongs to the pathway of GO 0000988 transcription factor
activity, both of which have a functional role on brain tissues. All
those provide evidence that supports the relationship between
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FIGURE 4 | Results of FUSION and SCAT for TWAS analysis of ALS with multiple brain tissues. (A) The QQ plot for SCAT; (B) The QQ plot for FUSION with each of
the GTEx brain tissues as reference dataset; (C) The distribution for analyzed genes across all 22 chromosomes; (D) The p-values of circle Manhattan plot of
analyzed genes for significance. Of note, the genomic inflation factor of the p values obtained via SCAT is 1.04, indicating the slight inflation observed in (A) might be
due to the polygenicity of ALS rather than uncontrolled unknown confounders.

SLC9A8, JUP, and TRIP11 with ALS. It also suggests that those
genes may be associated with ALS in a direct, pleiotropic or
mediated manner. Those new discoveries are expected to have
the potential to advance our understanding of the molecular
mechanism with regards to ALS and offer new insight into the
etiology of ALS.

Besides discovering new ALS-associated genes, another
contribution of the present study exists in the development
of SCAT that can integrate a series of correlated association
signals efficiently. As illustrated before, SCAT owns the attractive
advantage that it takes the summary of a group of p-values as
test statistic and evaluates the significance analytically without the
knowledge of correlation structure (Liu et al., 2019; Liu and Xie,
2019). Therefore, as enthusiastic interest in TWAS continues to
grow with more and more genetic and transcriptome data sets
collected, especially since large scale individual-level datasets are
still unable to obtain for some reasons, we believe that SCAT
possesses extensive usefulness to many analogous situations of
integrative genomic analyses.

Finally, several limitations of our work need to state. First,
among the five new SCAT-identified genes, we do not find

reasonable evidence for FAM66D and RP11-529H20.6 in the
literature. Second, we cannot replicate those new discoveries in
external data sets since such data resources are unavailable for us;
we thus simultaneously highlight the need to further validate our
findings with additional investigation and experimental follow-
up. Third, the used GTEx brain transcriptome reference panels
have small samples sizes (ranging from 70 to 137, with the average
of 102); as a result, our TWAS analysis may have only limited
power. Nevertheless, we note that, in terms of the number of
associated genes detected by FUSION with single brain tissue,
we believe those new associations are more likely biologically
relevant to ALS rather than completely driven by tissues with
greater sample size. For example, only 0.07% (i.e., 4) genes were
found in brain cerebellum although it has the largest sample size
(i.e., 137) and the greatest cis-heritable genes (i.e., 5,752); while
0.15% genes were identified in brain anterior cingulate cortex
BA24 which has only moderate sample size (i.e., 102) and cis-
heritable genes (i.e., 2,653). Fourth, because not all genes can
be available across all GTEx brain tissues (e.g., Table 2), we
cannot determine ALS-specific tissues or identify tissue-specific
ALS-associated genes, although both are also very interesting
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and worth of pursuing further (Sonawane et al., 2017; Finucane
et al., 2018; Hao et al., 2018). Nevertheless, results displayed in
Table 2 offer some suggestive observations for this issue. For
instance, FAM66D is likely specially associated with ALS in brain
cortex and RP11-529H20.6 is possibly specifically associated with
ALS in brain nucleus accumbens basal ganglia; ATXN3, SCFD1
and SLC9A8 are relevant to ALS in some brain tissues but not
others; while C9orf72 is associated with ALS across nearly all
brain tissues. We note that the step-down inference procedure
introduced in Sun et al. (2019) may be a promising approach that
can be applied to discriminate which genes drive the observed
association signal; but we reserve this problem for investigation
in the future.
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