
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: brarpau2010@gmail.com; 
 
Int. J. Environ. Clim. Change, vol. 13, no. 9, pp. 1193-1206, 2023 

 
 

International Journal of Environment and Climate Change 
 
Volume 13, Issue 9, Page 1193-1206, 2023; Article no.IJECC.103289 
ISSN: 2581-8627 
(Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)  

 

 

 

Development of Pedo-transfer 
Functions for Estimating Soil 

Aggregation and Erodibility in  
Kandi Region of Punjab, India 

 
Manpreet Singh 

a
,
 
Satinder Singh Brar 

a*
 and K. B. Singh 

a
 

 
a 
Department of Soil Science, PAU, Ludhiana, India. 

 
Authors’ contributions 

 
This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 
 

Article Information 
 

DOI: 10.9734/IJECC/2023/v13i92345 
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  

peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/103289 

 
 

Received: 10/05/2023 
Accepted: 13/07/2023 
Published: 17/07/2023 

 
 

ABSTRACT 
 

Quantification of soil aggregation and erodibility from easily measurable soil characteristics have 
been done by using pedo-transfer functions (PTFs) and PTFs developed were compared using 
statistical and machine learning techniques for the kandi region of Punjab. Dataset 1, having six 
basic soil properties, was used for the estimation of mean weight diameter (MWD) and erodibility 
(K), prediction using an artificial neural network (ANN) was slightly better than a generalized linear 
model (GLM). In dataset 2, six basic soil properties in dataset 1 having high correlation with soil 
parameters were used and prediction using GLM was slightly better than ANN. In dataset 3 
including all 11 basic soil properties, prediction using ANN was significantly better than GLM. Thus, 
ANN performs better for a complex system having a greater number of variables whereas for a 
small set having fewer variables, the statistical methods perform better.  
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1. INTRODUCTION 
 
Land degradation is a major issue that affects the 
capability of ecosystem services provided by the 
soil. The decline in soil quality caused by 
anthropogenic activities has been a global issue 
during the previous century and still, it has 
remained high on the international agenda during 
the current century because of its impact on 
world food security and environmental quality. 
The lower Shiwalik hills in Submontane area of 
Northern India are suffering from severe soil 
erosion resulting in the deterioration of soil 
physical quality in the region [1]. The stability of 
soil aggregates is considered as one of the most 
important indicators of soil physical quality. It is 
the measure of the resistance of soil aggregates 
against structural decomposition because of 
raindrop impact, running water, or wind [2,3]. 
Aggregate stability is a soil characteristic that is 
often linked to soil erodibility [4]. Soil cementing 
agents like clay, silt, and organic matter which 
result in aggregate stability are usually correlated 
with soil aggregate stability [5]. The soil 
erodibility which is the measure of the resistance 
offered by the soil to both detachment and 
transport processes of soil erosion, is an inherent 
property of the soil. It is influenced by soil's 
physical characteristics including texture, 
structure, organic matter, and chemical 
characteristics. Assessment of soil erodibility is 
important for erosion prediction and for planning 
suitable soil conservation measures. Mean 
Weight Diameter (MWD), Geometric Mean 
Weight Diameter (GMD), and percentage of 
Water Stable Aggregates (WSA) are the 
common parameters representing soil aggregate 
stability [6,7]. However, out of these indices, the 
MWD is the most widely used indicator for 
quantification of soil aggregate stability [8]. For 
the measurement of aggregate stability, the most 
common method is the wet sieving method [9]. 
For the measurement of aggregate stability, Le 
bissonnais [7] proposed a standard wet sieving 
method that consists of three treatments. These 
include fast wetting leading to slaking, slow 
wetting leading to microcracking, and stirring of 
pre-wetted aggregates for mechanical 
breakdown. However, evaluation of soil 
aggregate stability using these methods is time-
consuming and expensive. Neural network 
models outperformed support vector machines 
and multiple regression models of low accuracy 
were produced by multiple linear regression. So, 

to overcome this difficulty, Pedo-transfer 
functions (PTFs) have been developed for 
predicting aggregate stability [10-12]. For 
example, easy-to-measure soil parameters like 
organic carbon, particle size distribution, and 
bulk density are used in empirical multilinear 
regression-based models for the estimation of 
complex soil properties like mean weight 
diameter [13]. Researchers have developed 
PTFs to estimate soil erodibility also from basic 
soil properties under various conditions. These 
PTFs have been used as input for environmental 
simulation models. The pedo-transfer functions 
are used basically to translate the raw soil data 
into more useful information. These PTFs include 
linear, logarithmic, and other statistical models 
using various basic soil properties for the 
estimation of soil aggregate stability and soil 
erodibility. There is normally poor performance of 
the regression-based PTFs as they require prior 
information about input-output relationships. The 
statistical regression models require prior 
information about the relationship between 
independent and dependent soil properties and 
on the other hand for the neural network model 
there is no need for this type of prior information. 
Recently artificial intelligence in the form of 
machine learning techniques is also being 
employed in predictive models. Machine learning 
is the combination of processes that gives 
machines the ability to learn without the use of 
specific software programs. Machine learning 
methods like K Nearest Neighbor (KNN), Cubist, 
Artificial neural network (ANN), and Random 
Forest (RF) approaches have been deployed 
recently in the development of PTFs. Out of 
these approaches, ANN is a simplified model 
representing the structure of the biological neural 
network in which interconnected processing units 
are organized in a specific topology. Multiple 
layers of information are arranged using several  
nodes. These nodes include an input layer for 
feeding the data into the system, one or more 
intermediate hidden layers in which the learning 
takes place, and an output layer for providing the 
decision or prediction. No prior relationship 
between the input and output variables is 
required for machine learning techniques and it is 
one of their major advantage [14,15]. Although 
several statistical PTFs are available for 
estimating soil aggregate stability and soil 
erodibility from basic soil properties, still their 
standardization for identifying minimum data set 
is required for kandi region of Punjab. Machine 
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learning techniques may play an important role in 
this context. Therefore, the present study has 
been planned to compare existing PTFs with 
developed PTFs using statistical and machine 
learning techniques with the objectives of the 
Development of pedo-transfer functions for 
estimating soil erodibility and soil aggregate 
stability from basic soil properties using statistical 
methods and machine learning techniques. 
Comparison of estimated soil erodibility and soil 
aggregate stability using PTFs developed 
statistically, PTFs developed through machine 
learning techniques. Better estimation of soil 
erodibility and soil aggregate stability from easily 
measurable soil properties using PTFs may lead 
to better estimation of soil erosion which may 
help in the management of soil erosion. 
 

2. MATERIALS AND METHODS 
 

2.1 Soil Samples and Soil Properties 
 

The study was conducted at four locations in 
submontanous kandi region of Punjab in the 
districts of Pathankot (32

0
33

`
N, 75

0
69`E), 

Saleran (31
0
59`N, 75

0
97

`
E), Garhshankar 

(31
0
28`N, 76

0
21`E) and Ballowal Saunkhri 

(31
0
09

`
N, 76

0
38`E). The Kandi region's climate 

varied from semi-arid to sub-humid. The yearly 
rainfall in the area is around 1090 ± 340 mm. The 
rainfall distribution is bimodal, with 75–80% of 
total rainfall falling between June and September 
and 20–25% falling between the winter months 
(October to March). Soil samples were taken 
from Agroforestry, Grassland, Horticulture, 
Forestry, and Agriculture in each of the four 
locations. Soils were sampled at three depths 
within each land use: 0-7.5, 7.5-15, and 15-30 
cm. A total of 180 data points were there by 
taking 4 locations, 3 replications, 5 land uses, 
and three depths from each location. Soil 
samples were analysed for basic soil properties 
like pH, EC, OC, CEC, calcium carbonate, bulk 

density, Fe, and soil particle size analysis and 
applied soil properties like soil aggregation and 
soil erodibility. 
 

2.2 Soil Sample Analysis 
 
Soil samples were air-dried, crushed, and sieved, 
using a 2mm sieve before being analysed for a 
variety of physicochemical properties. 
Undisturbed soil samples were also taken in the 
form of huge clods of roughly 40-50 cm diameter 
using a spade from 0-15 and 15-30 cm depths at 
four locations in each land use. The clods were 
carefully transported to the laboratory and 
dropped from a height of 90-100 cm on grassy 
ground, breaking at natural weak spots. Wet 
sieving was done with the resultant aggregates. 
Using cores, separate samples were taken for 
bulk density assessments. Soil texture was 
analyzed by International pipette method [16], 
Organic carbon by Rapid titration method [17], 
Calcium Carbonate by Puri’s method [18], Cation 
exchange capacity by Ammonium acetate 
extraction method [19], pH by 1:2 soil water 
suspension [20], Electrical conductivity [21], 
Aggregate stability by Wet sieving method using 
Yoder apparatus [22], Bulk density by Core 
method [23], Iron by Atomic absorption 
spectroscopy [24]. The nomographic expression 
proposed by [25] can be used to estimate K from 
easily observable soil parameters such as 
texture, organic content, structure, and 
permeability. Singh and Khera [1] provided a 
modified technique for estimating K (Equation 1). 
 

K = M
1.14

(10
-7

) (12-α) + 4.28(10
-3

) (β-2) + 
3.29(10

-3
) (γ-3)                                            (1) 

 
Where M =M was calculated as 100 X 
(percentage of aggregates and primary 
particles<2.0 mm). α =Organic matter (%) β = 
structure code γ = permeability rating. 

 

 
 

Fig. 1.  Location of the study area 
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Fig.  2. Some photographs of selected land uses 
 

2.3 Secondary Data Obtain from Literature for MWD and K 
 

Table 1. Secondary data obtained from the literature for MWD 
 

References  PTFs (Basic properties) Applied property 

[26] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[27] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[28] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[29] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[30] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[31] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[32] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[33] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[34] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[35] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[36] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[37] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[38] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[39] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[40] Clay, EC, Sand, OC, Silt, Bulk density MWD 
[41] Clay, EC, Sand, OC, Silt, Bulk density MWD 
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Table 2. Secondary data obtained from the literature for K 
 

References PTFs (Basic properties) Applied property 

[42] Clay, EC, Sand, OC, Silt, Bulk density K 
[43] Clay, EC, Sand, OC, Silt, Bulk density K 
[44] Clay, EC, Sand, OC, Silt, Bulk density K 
[45] Clay, EC, Sand, OC, Silt, Bulk density K 
[46] Clay, EC, Sand, OC, Silt, Bulk density K 
[47] Clay, EC, Sand, OC, Silt, Bulk density K 
[29] Clay, EC, Sand, OC, Silt, Bulk density K 
[48] Clay, EC, Sand, OC, Silt, Bulk density K 

 

2.4 Machine Learning Technique 
 
An open-source Big ML software was used to 
estimate the soil aggregate stability and soil 
erodibility for machine learning techniques and 
Multilinear regression equation (GLM). For 
machine learning and Generalized linear model, 
training and testing of data was done.  
 
A total of 180 data points (Four locations X five 
land uses X three depths X three replications) 
were generated for 11 basic soil characteristics 
and three applied soil properties. Three data sets 
were prepared for these soil properties as 
described below:  
 
Dataset 1: Properties like Sand, silt, clay, bulk 
density, EC, and Organic carbon were used in 
Dataset 1. These are the available properties 
commonly in the literature also. This data set 
was prepared both from research data as well as 
from secondary literature. 
 
Dataset 2: Properties which show a significant 
correlation in the correlation matrix for (MWD and 
K) were used in Dataset 2. These are clay, Fe, 
calcium carbonate, pH, EC, OC, and BD.  
 
Dataset 3 (K, MWD): All 11 properties from 
research data were used in dataset 3. These are 
coarse sand, fine sand, silt, clay, Fe, calcium 
carbonate, pH, EC, OC, BD, and Cation 
exchange capacity).  
 

2.5 Training and Testing of Data 
 
For machine learning and Generalized linear 
model, training and testing of data was done. For 
training, 70% data was used and the remaining 
30% data was used for testing. 
 

2.6 Evaluation of PTFs 
 
Different regression metrics were used to 
evaluate the model 

2.7 Root Mean Square Error 
 
The lower the RMSE value, the better the model 
performance. RMSE was used while calibration 
of the model to find the most sensitive 
parameters. This is a measure of the model’s 
real inaccuracy and is calculated as given in 
Equation 2. 
 

RMSE =  
         
 
   

 
                                 (2) 

 

2.8 Coefficient of Correlation 
 

The correlation coefficient indicates how close 
the observed and projected regression lines are 
to an ideal match. This coefficient is normally 
between -1 to +1 and was estimated using 
Equation 3.  
 

R=

                     
 

   

 

   

           
 
    
 

 

   
         

 

                   (3) 

 

2.9 Coefficient of Determination (R2)  
 

R
2 
 = 1-

                   
   

     
 
              

                           (4) 

 

2.10 MAE (Mean Absolute Error)  
 

MAE = 
 

 
     

 
                                       (5) 

 

Where Oi is the observed aggregate stability and 
Pi is the anticipated aggregate stability, 
respectively, O is the mean of the observed 
values, k is the total number of explanatory, and 
n is the number of values. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Basic Soil properties 
 

The Basic soil properties were analysed and 
results were concluded, the pH varies from 6.6-
7.7, EC Varies from 0.10-0.23dS m

-1
, Organic 
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Carbon is 0.59-0.92%, Cation Exchange 
Capacity: is 8.41-13.71 C mol kg

-1
, Calcium 

Carbonate 0.06-0.09%, Bulk density: 1.27-1.48 
Mg m

-3
, Fe content varies from 11.9-21.9 mg kg

-1
, 

Mean weight diameter 0.46-2.59 mm, K 
erodibility factor varies from 0.16-0.33. Textural 
class at Pathankot and Saleran was loamy sand, 
at Ballowal Saunkhri it was sandy loam, and at 
Garhshankar it was sandy clay loam. 
 

3.2 Development of PTFs Statistically for 
Aggregate Stability and Soil 
Erodibility 

 

3.2.1 Estimating MWD 
 

Using Dataset 1 soil properties, equation 6 
has been obtained: 
 

MWD= 4.21+0.07*Sand + 0.02*Silt + 0.01*Clay + 
0.87*OC – 2.36*BD – 11.23 *EC                     (6) 
 

R
2
=0.61, MAE =0.46, MSE =0.35, RMSE =0.59 

 

A multilinear regression equation was developed 
for dataset 1. It was observed that Sand, Silt, 
clay, OC, BD and EC explained the 61% 
variability for MWD. OC, BD and EC played a 
significant role in the estimation of MWD. 
 

Using Dataset 2 soil properties, equation 7 
has been obtained: 
 

MWD = 5.23-0.009*pH-11.43*EC+ 1.10*OC + 
0.53*CaCO3- 2.10*BD + 0.005*Clay+0.009*Fe               

(7) 
 
R

2
=0.56, MAE =0.38, MSE =0.56, RMSE=0.74 

 

A multilinear regression equation was developed 
for data set 2. It was observed that pH, EC, OC, 
Calcium carbonate, Clay, Fe, BD explained the 
56% variability for MWD.EC, OC, calcium 
carbonate and bulk density played a significant 
role in the estimation of MWD. 
 

Using Dataset 3 soil properties, equation 8 
has been obtained: 
 

MWD = 4.71+0.03*pH-9.15*EC + 0.87*OC+ 
0.001*CEC + 0.37*CaCO3- 2.61*BD + 
0.01*Coarse sand-0.02*Fine sand + 0.03*Silt -
0.01*Clay + 0.02*Fe                                         (8) 
 

R
2
=0.59, MAE =0.50, MSE =0.44, RMSE=0.66 

 

A multilinear equation was developed for data set 
3. It was observed that pH, EC, OC, CEC 
Calcium carbonate, Coarse sand, fine sand, Clay, 
Fe, BD explained the 59 % variability for 

MWD.EC, OC, calcium carbonate, Fe, and bulk 
density played a significant role in it. 
 

3.2.2 Estimating soil erodibility 
 

Using Dataset 1 soil properties, equation 9 
has been obtained: 
 

K = -0.76+ 0.005*Sand + 0.01*Silt- 0.01*Clay- 
0.02*OC+ 0.20*BD+ 0.93*EC                          (9) 
 

R
2
=0.65, MAE =0.04, MSE= 0, RMSE=0 

 

A multilinear regression equation was developed 
for the data set 1. It was observed that Sand, Silt, 
clay, OC, BD and EC explained the 65% 
variability for K. Silt, Clay, OC, BD, EC played a 
significant role in the estimation of K. 
 

Using Dataset 2 soil properties, equation 10 
has been obtained: 
 

K = 0.03 +0.06*pH +0.82*EC – 0.005*OC + 
0.07*CaCO3 + 0.10*BD - 0.05*Clay-0.04*Fe   (10) 
 

R
2
=0.85, MAE =0.03, MSE=0, RMSE=0 

 

A multilinear regression equation was developed 
for dataset 2. It was observed that pH, EC, OC, 
Clay, Fe, BD explained the 85% variability for K 
and properties like EC, OC, Clay, Fe, BD played 
a significant role in the estimation of K. 
 
Using Dataset 3 soil properties, equation 11 
has been obtained: 
 
K = -0.40+0.04*pH +0.63*EC – 0.001*OC + 
0.008*CEC + 0.076*CaCO3+ 0.16*BD + 0.03* 
Coarse sand + 0.003* Fine sand + 0.006* Silt -
0.003* Clay -0.007*Fe                                     (11) 
 
R

2
=0.73, MAE =0.04, MSE =0, RMSE=0 

 
A multilinear regression equation was developed 
for dataset 3. It was observed that pH, EC, OC, 
CEC Calcium carbonate, Coarse sand, fine sand, 
Clay, Fe, BD explained the 73% variability for K. 
EC, OC, BD, Clay and Fe played a significant 
role in the estimation of K. 
 

3.3 Development of PTFs by Machine 
Learning for Soil Erodibility and 
Aggregate Stability 

 
3.3.1 Estimating MWD 
 
Using Dataset 1 soil properties: 
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Fig. 3. Properties of field importance and Different Regression metrics for MWD using  
dataset 1 

 
When ANN was used for the estimation of MWD 
for data set 1, the model predicted the role of 
various properties and it was observed that EC 
played the most important role. Different 
weightages were given to other soil properties 
also (Fig. 3). Fig. 3 is the snapshot of the 
prediction of the MWD by the model. The 
regression metrics are also given and it showed 
that soil properties used in dataset 1 explained 
64 % of the variability.  
 
Using Dataset 2 soil properties: 
 
When ANN was used for the estimation of MWD 
for data set 2, the model predicted the role of 
various properties and it was observed that EC 
played the most important role. Different 
weightages were given to other soil properties 

also (Fig 4.). Fig 4 is the snapshot of the 
prediction of the MWD by the model. The 
regression metrics are given in Fig. 4 and it 
showed that soil properties used in dataset 2 
explained 44% of the variability.  
 
Using Dataset 3 soil properties: 
 
When ANN was used for the estimation of MWD 
for data set 3, the model predicted the role of 
various properties and it was observed that EC 
played the most important role. Different 
weightages were given to other soil properties 
also Fig. 5. Fig. 5 is the snapshot of the 
prediction of the MWD by the model. The 
regression metrics are given in and it showed 
that soil properties used in dataset 3 explained 
88 % of the variability.  
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Fig. 4. Properties of field importance and different Regression metrics for MWD using  
dataset 2 
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Fig. 5. Properties of field importance and different regression metrics for MWD using dataset 3 
 
3.3.2 Estimating soil erodibility 
 
Using Dataset 1 soil properties: 
 

 
 

 
 

Fig. 6. Properties of field importance and different regression metrics for K using dataset 1 
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When ANN was used for the estimation of K for 
data set 1, the model predicted the role of 
various properties and it was observed that Clay 
played the most important role. Different 
weightages were given to other soil properties 
also (Fig. 6). Fig. 6 is the snapshot of the 
prediction of the K by the model. The regression 
metrics are given in Fig. 6 and it showed that soil 
properties used in dataset 1 explained 79 % of 
the variability. 
 
Using Dataset 2 soil properties: 
 
When ANN was used for the estimation of K for 
data set 1, the model predicted the role of 
various properties and it was observed that Clay 
played the most important role. Different 
weightages were given to other soil properties 

also (Fig. 7). Fig. 7 is the snapshot of the 
prediction of the K by the model. The regression 
metrics are given in Fig. 7 and it showed that soil 
properties used in dataset 2 explained 73 % of 
the variability. 
 
Using Dataset 3 soil properties: 
 
When ANN was used for the estimation of K for 
data set 1, the model predicted the role of 
various properties and it was observed that Clay 
played the most important role. Different 
weightages were given to other soil properties 
also (Fig. 8). Fig. 8 is the snapshot of the 
prediction of the K by the model. The regression 
metrics are given in Fig. 8 and it showed that soil 
properties used in dataset 2 explained 73 % of 
the variability. 

 

 
 

 
 

Fig. 7. Properties of field importance and Different Regression metrics for K using dataset 2 
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Fig. 8. Properties of field importance and Different Regression metrics for K using dataset 3 
 

3.4 Comparison between Different PTFs 
Developed through Machine Learning 
and Statistically 

 
The value of comparing the ANN and GLM 
models, the results showed that ANN explained 
the variability much better than the GLM for 
dataset 3, in which eleven soil properties were 
used, for the prediction of all three complex soil 
properties i.e. K, MWD. This is also evident from 

the values of MAE, MSE, and RMSE obtained 
using GLM and ANN. Whereas, for data set 1 
and data set 2, where the number of basic soil 
properties used was less, the results were not 
consistent. Comparing the ANN and GLM it was 
concluded that ANN performs better for a large 
set of data and a complex system having a 
greater number of variables whereas for a small 
set of data and for a simple system having fewer 
variables the statistical methods perform better. 

 
Table 3. Comparing ANN and GLM 

 

Different Data set MAE MSE RMSE R
2 

GLM ANN GLM ANN GLM ANN GLM ANN 

Data set 1 (MWD) 0.46 0.46 0.35 0.37 0.59 0.6 0.61 0.64 
Data set 1 (K) 0.03 0.03 0.00 0.00 0.00 0.00 0.65 0.79 
Data set 2 (MWD) 0.38 0.47 0.56 0.55 0.74 0.74 0.56 0.44 
Data set 2 (K) 0.03 0.03 0.00 0.00 0.00 0.00 0.85 0.73 
Data set 3 (MWD) 0.50 0.22 0.44 0.10 0.66 0.31 0.59 0.88 
Data set 3 (K) 0.03 0.03 0.00 0.00 0.00 0.00 0.73 0.84 
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4. CONCLUSIONS 
 

Machine learning (ANN) and Statistical model 
(multi-linear regression / GLM) was used for 
developing PTFs for aggregate stability and soil 
erodibility. Three types of datasets were made 
for basic soil properties and were used for 
prediction of MWD and K. 70% of the total 
available, research and literature data was 
utilized to train the model, while 30% was used to 
test the model. For dataset 1, using the GLM 
model, the R

2 
values between actual and 

predicted MWD and K were 0.61 and 0.65, 
respectively. Whereas for the same dataset 1, 
using the ANN model, the R

2 
values between 

actual and predicted MWD and K were 0.64 and 
0.79, respectively. For dataset 2, using the GLM 
model, the R

2 
values between actual and 

predicted MWD and K were 0.56 and 0.85, 
respectively. Whereas for the same dataset 2, 
using the ANN model, the R

2 
values between 

actual and predicted MWD and K were 0.44 and 
0.73, respectively. For dataset 3, using the GLM 
model, the R

2 
values between actual and 

predicted MWD and K were 0.73 and 0.59, 
respectively. Whereas for the same dataset 3, 
using the ANN model, the R

2 
values between 

actual and predicted MWD and K were 0.88 and 
0.84, respectively. So, it may be concluded that 
ANN performs better for a large set of data and a 
complex system having a greater number of 
variables whereas for a small set of data and for 
a simple system having fewer variables, the 
statistical methods perform better.  
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