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Abstract
Material development involves laborious processes to explore the vast materials space. The key to
accelerating these processes is understanding the structure-functionality relationships of materials.
Machine learning has enabled large-scale analysis of underlying relationships between materials via
their vector representations, or embeddings. However, the learning of material embeddings
spanning most known inorganic materials has remained largely unexplored due to the expert
knowledge and efforts required to annotate large-scale materials data. Here we show that our
self-supervised deep learning approach can successfully learn material embeddings from
crystal structures of over 120 000 materials, without any annotations, to capture the
structure-functionality relationships among materials. These embeddings revealed the profound
similarity between materials, or ‘materials concepts’, such as cuprate superconductors and
lithium-ion battery materials from the unannotated structural data. Consequently, our results
enable us to both draw a large-scale map of the materials space, capturing various materials
concepts, and measure the functionality-aware similarities between materials. Our findings will
enable more strategic approaches to material development.

1. Introduction

The diverse properties of the inorganic materials originate from their crystal structures, i.e. the atomic-scale
periodic arrangements of elements. How structures determine low-level material properties such as the band
gap and formation energy is well studied as the structure-property relationship [1, 2]. On the other hand, the
materials science literature often discusses ‘superconductors’ [3], ‘permanent magnets’ [4], or ‘battery
materials’ [5], referring to their higher-level properties, or functionality. Nevertheless, understanding what
structures exhibit such functionality, or understanding the structure-functionality relationship, is a
fundamental question in materials science. We call this functionality-level material similarity ‘materials
concepts’. Traditionally, materials science has sought new materials by experimentally and theoretically
understanding specific functionalities of materials in a bottom-up fashion [1–5]. However, this
labour-intensive narrowly focused analysis has prevented us from grasping the whole picture of the materials
space across various materials concepts. For next-generation material discovery based on the
structure-functionality relationship, we argue here the need for a top-down unified view of crystal structures
through materials concepts. We pursue this ambition by learning a latent representation space of crystal
structures. Thus, this representation space should ideally both (a) recognise materials concepts at scale and
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Figure 1. Our strategy for learning materials concepts. (a) Diamond as an example material and its various structural attributes
showing different information of diamond in different data forms, or modalities. Since each attribute has its own advantages and
disadvantages in expressing a material, using multiple attributes for a material can provide a more comprehensive view of the
material. Particularly, the combination of the crystal structure and the x-ray diffraction (XRD) pattern, which we employ in this
study, is known to well reflect two complementary structural features of materials, the local structure and the periodicity [1].
(b) Our goal is to represent each material as an abstract constant size vector (embedding) whose distances to other embeddings
reflect conceptual (functionality-level) similarities between materials. These embeddings allow us to visualise the materials space
intuitively and also to search for conceptually similar materials given a query material. We learn embeddings from pairs of crystal
structures and XRD patterns in the framework of deep metric learning. This cross-modal learning approach trains deep neural
networks by teaching them that each pair should represent the same material entity. Because the XRD pattern can be theoretically
calculated from the crystal structure, this learning can be performed in a self-supervised manner without any explicit human
annotations for the materials dataset.

(b) be equipped with a functionality-level similarity metric between materials. We here utilise multi-modal
structural attributes of materials to effectively capture structural patterns correlated to material
functionality (figure 1). The underlying hypothesis here is that materials concepts are the intrinsic nature of
crystal structures, and therefore, deeply analysing the structural similarity between materials will lead to
capturing functionality-level similarity.

Figure 3(a) highlights key results by our representation space, which maps the crystal structures of
materials to abstract 1024-dimensional vectors. For visualisation, these vectors were reduced to 2D plots in
the figure using a dimensionality reduction technique called t-distributed stochastic neighbour embedding
(t-SNE) [6]. We target 122 543 inorganic materials registered in the Materials Project (MP) database
(amounting to 93%) to capture nearly the entire space of practically known inorganic materials. These
crystal structures themselves contain information about their functionalities implicitly. However, they do not
explicitly tell us what structural patterns lead to specific material functionalities such as superconductivity
due to complicated structure-functionality relationships. Nevertheless, these materials form clusters of
various materials concepts in the space (see annotations in figure 3(a)), showing the success of our
representation space capturing structural patterns correlated to material functionality.

When analysing diverse relationships entangled with complex features in large-scale data, machine
learning (ML) and deep neural networks (DNNs) are key technologies [7, 8]. Indeed, these technologies
often surpass human ability in recent materials informatics work. For example, when extracting features
from materials data for complex tasks such as physical property prediction, learning-based descriptors
[9–18] have been shown to outperform traditional hand-crafted descriptors [19–24].

Likewise, representation learning is gaining attention for understanding human-incomprehensible
large-scale materials data [25–29], visualising the materials space [25, 27–30], and generating crystal
structures [31–36]. These material representations aim to map the abstract, comprehensive information of
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each material into a vector called an ‘embedding’. Our work has the same purpose as that of embedding
learning. However, to date, neither descriptor nor embedding learning explicitly learns the underlying
relationships or similarities between materials. Particularly, existing embeddings [25–29] are learned
indirectly as latent feature vectors in an internal layer of a DNN by addressing a surrogate training task (e.g.
the prediction of physical properties [27, 28], a task of natural language processing (NLP)[26] or its variants
[25, 29]). In such an approach, it is unclear from which layer we should obtain the latent vectors or which
metric we should use to measure the distance/similarity between them.

Capturing abstract concepts of materials via learning structural similarities between them is analogous to
word embedding learning [26] in NLP. Similar to materials concepts, meanings of words in natural languages
often reside in complex and abstract notions, which prevent us from acquiring precise definitions for them.
Word embeddings then attempt to capture individual word concepts, without being explicitly taught, by
absorbing our word notions implicitly conveyed in the contexts provided by a large-scale text corpus. Once
optimised, similarities/distances between embeddings express their concepts, e.g. the embedding of ‘apple’
will be closer to those of other fruits such as ‘grape’ and ‘banana’ than ‘dog’ or ‘cat’. Our crystal structure
embedding shares a similar spirit with word embedding in that both attempt to capture abstract concepts via
learned similarities. More importantly, we exploit a large-scale material database as a corpus of materials that
implicitly conveys important structural patterns in its contexts of crystal structures, as analogously to word
embedding. These structure instances of diverse kinds of materials, even without explicit annotations about
their properties, should contain tacit but meaningful information about physics and material functionality
that can guide the learning of ML models. From an ML perspective, such a learning strategy is called
self-supervised learning [37], in which the data of interest themselves provide supervision.

In this study, we demonstrate the large-scale self-supervised learning of material embeddings using
DNNs. In essence, we follow the principle that the structure determines properties and aim to discover
materials concepts purely from crystal structures without explicit human supervision in learning. To this
end, we use a collection of crystal structures as the only source of training data and do not provide any
annotation regarding specific material properties (e.g. class labels such as ‘superconductors’ and ‘magnets’, or
property values such as superconducting transition temperature and magnetisation). Furthermore, unlike
existing methods for material embedding learning, we explicitly optimise the relationships between
embeddings by pioneering the use of deep metric learning [38]. Metric learning is an ML framework for
learning a measure of similarity between data points. Unlike the common practice of metric learning
performed in a supervised fashion using annotated training data [38], we allow our ML model to be learned
from the unannotated structural data in a self-supervised fashion.

2. Results

Our key idea for self-supervised learning, illustrated in figure 2(a), is to learn unified embedding
representations for paired inputs expressing two complementary structural features characterising materials:
the local structure and the periodicity [1]. In our model, the local structure is represented by a graph whose
nodes and edges stand for the atoms and their connections. The periodicity is represented by a simulated
x-ray diffraction (XRD) pattern, which can be theoretically calculated from the crystal structure using
Bragg’s law and Fourier transformation [1]. We simultaneously train two DNN encoders by enforcing them
to produce consistent embeddings across the two different input forms. This training strategy follows a
simple optimisation principle: (a) for a positive pair in which the input crystal structure and XRD pattern
come from the same material, the Euclidean distance between two embedding vectors is decreased, and (b)
for a negative pair in which these inputs come from different materials, the distance is increased. We
implement this principle in the form of a bidirectional triplet loss function, as illustrated in figure 2(b). For
the detailed method protocol, see section 5.

By design, we minimise human knowledge of specific materials concepts in both the data source and
training process, with the belief that materials concepts are buried in crystal structures. This design principle
enhances the significance of the resulting embedding highlighted earlier (figure 3(a)). It captures profound
materials relationships through simple data and optimisation operations considering only general and
elementary knowledge of materials such as crystallographic data and Bragg’s law. The results suggest that
materials concepts can be exposed in deeply-transformed abstract expressions unifying the complementary
factors, i.e. the local structure and periodicity, of crystal structures.

The following analyses examine the embedding characteristics more carefully to see if the embedding
space has the two desired features mentioned above. Specifically, we qualitatively analyse (a) the global
embedding distribution using t-SNE visualisation and (b) the local neighbourhoods around some important
materials using the learned similarity metric between crystal structures. In the latter, a superconductor
(Hg-1223), a lithium-ion battery material (LiCoO2), and some magnetic materials serve as our benchmark
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Figure 2. Our self-supervised deep metric learning for materials. (a) The proposed network architecture, including two separate
DNNs to encode the crystal structures and XRD patterns into unified embedding vector representations. To account for respective
input data forms (figure 1(b)), the crystal-structure encoder employs a DNN for graphs while the XRD pattern encoder employs a
1D convolutional neural network. (b) A schematic view of our bidirectional triplet loss. This triplet loss is used to simultaneously
train the two DNN encoders to output embeddings that are close together when the input crystal structures and XRD patterns are
paired (red-coloured x and y) and far from one another when the inputs are not paired (x and y vs others). More details are given
in section 5.

materials because of the high social impacts and the diverse properties yet complex structures of these
material classes. These analyses also demonstrate the usefulness of our materials map visualisation and
similarity metric for material discovery and development.

2.1. Global distribution analysis
Careful inspection of the embedding space (figure 3(a)) reveals various clusters consistent with our
knowledge of materials. Here, we note several interesting examples. A series of clusters corresponding to
double perovskites (A2BB

′
X6) with different anions, X, exists along the left edge and at the centre of the map,

forming a family of materials with the same prototypical crystal structure. This layout suggests that our
model captures the structural similarity while properly distinguishing the local atomic environment at each
site. At the lower left of the map, well-known 2D materials (transition metal dichalcogenides) form clusters
in accordance with their atomic stacking structures [39]. At the top edge lies a cluster of imaginary unstable
materials with extremely low-density structures (see also figure 5(a) for more details), representing one of
the simplest cases of crystal structures governing physical properties. This cluster of unstable materials is an
example showing that our embeddings capture materials characteristics solely from crystal structures
without any explicit annotation given for training.

One exciting finding from this map is a cluster of cuprate superconductors at the left edge. This cluster
includes the first-discovered copper oxide superconductor, the La–Ba–Cu–O system, and the well-known
high-transition-temperature (Tc) superconductors YBCO (YBa2Cu3O7 or Y-123), which are located close to
La–Ba–Cu–O. These celebrated superconductors share a common structural feature, a CuO2 plane, that is
vital to their superconductivity [3]. The formation of this cluster suggests that our embeddings recognise this

4



Mach. Learn.: Sci. Technol. 3 (2022) 045034 Y Suzuki et al

Figure 3. A map of the materials space. (a) A global map of the materials space, plotted via a t-SNE visualisation of the
embeddings. Each point corresponds to an individual material that is encoded by the trained crystal-structure encoder. The map
was annotated with cluster labels through manual inspection. Our materials map is publicly accessible via an interactive website
(https://github.com/quantumbeam/materials-concept-learning). (b) A close-up view of a cluster of cuprate superconductors in
the materials space. (c) Crystal structures of Y-123 and Y-124 families, which are closely distributed in (b). The CuO chain in
Y-123 and the double CuO chain in Y-124, which is similar to vertically repeating Y-123, are important features of YBCO
superconductors.

hallmark structural feature. A closer look at this cluster (figure 3(b)) further reveals the presence of
subclusters with structural features linking them. Y-123 and its variant Y-124 have a non-trivial structural
similarity related to the CuO chain (see figure 3(c)). In addition, we confirmed other major cuprate
superconductors containing Bi, Tl, Pb, or Hg form respective clusters in accordance with their local
structures called ‘block layers’, a key structural concept for understanding the underlying physics of cuprate
superconductors [40]. The proximity of these materials on the map further supports the claim that the
embeddings capture the structural characteristics and, consequently, the structure-functionality
relationships between cuprate superconductors.

These findings naturally lead us to the idea that the map might be able to identify potential
superconductors or other beneficial compounds that have not yet been recognised. We leave this idea as an
open question and have set up a project website where anyone can dig into the embedding map to search for,
or rediscover, potential compounds with preferable functionality.

The t-SNE visualisation also provides a macroscopic perspective on the materials space based on the
crystal structure. The simplest indicator of success for this model is the distribution of the elements within

5

https://github.com/quantumbeam/materials-concept-learning


Mach. Learn.: Sci. Technol. 3 (2022) 045034 Y Suzuki et al

Figure 4. Elemental distributions within the material embedding space. t-SNE plots of the embeddings are laid out on the periodic
table, coloured blue or grey according to whether each material contains the corresponding element or not. Similar distributions
in the vertical and horizontal directions (groups and periods) of the table indicate that the embeddings successfully capture the
similarities of roles between elements in crystal structures. ‘n.a.’ means no material containing the element is found in our dataset.

Figure 5. Physical property distributions within the material embedding space. t-SNE plots of the embeddings are coloured
according to the physical properties: energy above the hull, band gap, and magnetisation. These plots show clusters of materials
with similar physical properties, indicating that the embeddings capture the property similarities between materials. (a) The
distribution of energy above the hull (eV). A large value of energy above the hull indicates that a material is unstable. A cluster of
unstable compounds containing sparse unsynthesisable crystal structures was identified on the upper left. (b) The distribution of
the band gap (eV). The distribution overlap of large-bandgap materials in this figure and oxides in figure 4 demonstrates a
well-known connection between the band gap and oxygen. (c) The distribution of magnetisation (T). Materials with large
magnetic moments have higher composition ratios of magnetic elements such as Mn, Fe, Co, and Ni and are particularly studied
in the rare-earth permanent magnet research. The distinct yellow cluster in the top right of this figure contains intermetallic
compounds of the magnetic elements and rare-earth elements (e.g. Ce, Pr, Nd, and Sm), as evident from figure 2 where the
distributions of these elements overlap in this area.

the materials map. Because atoms and ions with similar electron configurations compose materials with the
same or similar crystal structures, we expect the element distributions to show cluster-like features if our
embeddings have been trained successfully. In figure 4, we highlight each element in the map and display all
elements in the form of a periodic table. As expected, figure 4 clearly shows similar distributions of
blue-coloured clusters in the vertical and horizontal directions. These distributions can be analogously called
the ‘alkali metal plateau’, the ‘3d transition metal district’, or ‘rare-earth mountains’ if we follow the map
metaphor, indicating that the embeddings succeed in capturing the similarities of roles between elements in
crystal structures. Additionally, we noticed that well-known connections between physical properties and
elements can also be probed using this plotting technique (see figures 5(b) and (c) for details). Although
these visualisations (figures 4 and 5) are intended to confirm expected outcomes rather than showing
interesting findings, they demonstrate their potential utility, e.g. for giving researchers new insights or
helping them find materials with desired properties.
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Figure 6. Crystal structures of queries and nearest neighbours. (a) Crystal structures of the Hg-1223 superconductor and its first
and second nearest neighbours, Hg-1234 and Hg-1212, in the embedding space. These are all Hg-based copper oxide
superconductors with high Tc and are built on two important components, namely, block layers and superconducting layers.
Placing these close-kin materials, yet with different numbers of superconducting layers, as close neighbours suggests that the
embedding captures the conceptual similarity in their structures. See also table 1 for the top-50 neighbour list of Hg-1223, in
which more superconductors with high Tc are found. (b) Crystal structures of the well-known lithium-ion battery cathode
material LiCoO2 and its neighbours in the embedding space. The layered and spinel families, which are two major types of the
cathode materials, were identified in the neighbourhoods. See also table 2 for the list of the top-50 neighbours, in which more
layered-family materials are found.

2.2. Local neighbourhood analysis
We next examine the local neighbourhoods of several benchmark areas to verify whether the learned metric
recognises functionality-level material similarity. Since the embeddings were optimised with the Euclidean
distance, we also used this metric to determine the neighbourhoods.

As the first example, we analysed the neighbourhoods of Hg-1223, a superconductor with the highest
known Tc (134K) at ambient pressure [42]. To our surprise, the first and second nearest neighbourhoods
correspond to its close kin Hg-1234 and Hg-1212, which also have high Tc values (125K and 90K) but
different block layers [40] from those of Hg-1223 (see figure 6(a)). Further investigation identified major
Tl-based high-Tc superconductors, such as Tl-2234 (Tc = 112K), Tl-2212 (Tc = 108K), and Tl-1234
(Tc = 123K)[43], and many other superconductors occupying the top-50 neighbourhoods (see table 1). The
connection between the crystal structures and Tc values involves non-trivial mechanisms that are not
immediately evident from the crystal structures [3, 40]. The results suggest that our model effectively bridges
this gap with the help of learned structure-functionality relationships that are deeply buried in the
1024-dimensional space.

Next, we examined lithium-ion battery materials, which substantially support our lives of today. This
technology has been developed through the discovery of new materials and the understanding of their
structure-composition-property-performance relationships and is now bottlenecked by the cathodes
(positive electrodes) in terms of the energy density and production cost [5]. We therefore studied the
neighbourhoods of LiCoO2, the first yet most dominant cathode material [5]. Impressively, two of the three
leading cathode material groups, namely, the layered, spinel families [5] (see figure 6(b) for visualisations),
were identified in the neighbourhoods. Specifically, similar to LiCoO2, a family of layered LiMO2, with M
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Table 1. The top-50 neighbours of Hg-1223 in comparison with hand-crafted descriptors.

Our embedding Ewald sum matrix Sine Coulomb matrix

No. Formula ID Formula ID Formula ID

Query Ba2Ca2Cu3HgO8 mp-22601 Ba2Ca2Cu3HgO8 mp-22601 Ba2Ca2Cu3HgO8 mp-22601
1 Ba2Ca3Cu4HgO10 mp-1228579 Sr4TlFe2O9 mp-1218464 Tl(CuTe)2 mp-569204
2 Ba2CaCu2HgO6 mp-6879 Ba2La2Ti2Cu2O11 mp-1214655 CaLa2BiO6 mvc-15176
3 Ba6Ca6Cu9Hg3O25 mp-1228760 CeY4Mg5 mp-1226574 PtC4S2(IO)2 mp-1102535
4 Sr2CaCu2(BiO4)2 mp-1218930 Ba6Nb2Ir(ClO6)2 mp-558113 Ba2FeReO6 mp-31756
5 Ba10Ca5Cu10Hg5O31 mp-1229139 Ba6Ru2Pt(ClO6)2 mp-554949 Hg(SbO3)2 mp-754065
6 SrCa2Cu2(BiO4)2 mp-1208800 Ba2Nd2Ti2Cu2O11 mp-557043 Ba2CuWO6 mp-505618
7 Ba8Ca4Cu8Hg4O25 mp-1228371 Ba4ScTi4BiO15 mp-1228157 CaLa2WO6 mvc-15479
8 Ba2Ca3Tl2(CuO3)4 mp-556574 La3ZnNi3 mp-18573 Ba2YTaO6 mp-12385
9 Ba2Mg3Tl2(WO3)4 mvc-129 Zr4WC5 mp-1215364 TlCdTe2 mp-998919
10 Ba2TlV2O7 mvc-2978 Nd3GaCo3 mp-1103877 TlCuPd2 mp-1096374
11 Sr2YCu2(BiO4)2 mp-1208863 Y4Ti6Bi2O21 mp-1216208 LaTlAg2 mp-867817
12 Sr2LaCu2HgO6 mp-1208803 Sm3HoS4 mp-1219190 In3Au mp-973498
13 Ba2CaTl2(CuO4)2 mp-573069 Ba3Bi(BO2)9 mp-1200141 CeTlAg2 mp-867298
14 Ba4CaCu6(HgO8)2 mvc-15237 AgRhO2 mp-997106 Cs2WBr6 mp-541753
15 Ba4Ca4Cu6Hg2O17 mp-1228265 YbSm3S4 mp-1215523 TlIn3 mp-1187742
16 Ba2AlTlCo2O7 mvc-2977 Ca4Cd3Au mp-1227562 In3Pt mp-1184857
17 Sr8Pr4Cu9(HgO8)3 mp-1218674 InAg4 mp-1223819 Ca4Cd3Au mp-1227562
18 Ba6Ca3Cu6Hg3O19 mp-1228161 Sr4ZrTi3O12 mp-1218457 Cd3Pt mp-1183641
19 Ba8Ca8Tl7(Cu4O13)3 mp-1204270 Ce3Ni2Ge7 mp-1213875 Ag3Au mp-1183214
20 Ba4Ca4Tl3Cu6O19 mp-542197 Ba2YTlV2O7 mvc-2994 Mn4BiSb3 mp-1221739
21 Ba6Ca6Tl5Cu9O29 mp-680433 Te3Au mp-1217358 NdTlAg2 mp-974782
22 Ba2AlTlCo2O7 mp-1266279 Nd3Cu4(P2O)2 mp-1209832 HgI3 mp-973601
23 Ba2Ca2Tl2Ni3O10 mvc-3067 Ba4Zn4B14Pb2O31 mp-1194514 TlCdIn2 mp-1093975
24 Ba2Ca2Tl2Cu3O10 mp-653154 Ba6Na2Nb2P2O17 mp-556637 CePd2Pt mp-1226474
25 Ba2Ca2Tl2Co3O10 mvc-3021 Ba2Tb2Ti2Cu2O11 mp-505223 PmHgRh2 mp-862913
26 Sr2CaCu2(BiO4)2 mp-555855 Sc2TlCu3S5 mp-1209018 Sr2LaCu2HgO6 mp-1208803
27 Ba4Tl2Cu2HgO10 mp-561182 Eu(GaGe2)2 mp-1225812 NdPd2Pb mp-1186317
28 Ba6Ca12Cu15Hg3O37 mp-1229082 AgTe3 mp-1229041 PmTlRh2 mp-862967
29 BaCuReO5 mvc-7248 Sm3GaCo3 mp-1105102 Cd3Ir mp-1183645
30 Ba2Ca3Tl2(FeO3)4 mvc-145 Nb4Rh mp-1220441 HgPd3 mp-1184658
31 Sr10Cu5Bi10O29 mp-667638 La3(Al2Si3)2 mp-1211155 SnPd2Au mp-1095757
32 Ba2Ca3TlCu4O11 mp-1228589 Ce2In8Pt mp-1103614 PmTlAg2 mp-862966
33 Ba2Ca3Tl2(CuO3)4 mp-556733 CaNb2Bi2O9 mp-555616 Rb2LaAuCl6 mp-1113498
34 La2B3Br mp-568985 Ce2In8Ir mp-1207157 VAg3HgO4 mp-1216423
35 BaTl(SbO3)2 mvc-10727 Tc6BiO18 mp-1101632 In2SnHg mp-1097125
36 Sr10Cu5Bi10O29 mp-652781 Sb3Au mp-1219474 PrBiPd2 mp-976884
37 Ba2Tl2Zn2Cr3O10 mvc-3164 Sr4LaCl11 mp-1218463 TlIn3 mp-1216611
38 Ba2Ca2Tl2Fe3O10 mvc-3027 LaBiS2O mp-1078328 Cd2AgPt mp-1096169
39 Ba2Ti3Tl2O10 mvc-2939 HfNb4CN4 mp-1224363 Rb2CeAuCl6 mp-1113397
40 Sr2TaAlCu2O7 mp-1251503 MoN mp-1078389 In2SnPb mp-1223808
41 Ba2Mg3Tl2(SnO3)4 mvc-10576 YZnGe mp-13160 Cd2AgPt mp-1183537
42 Sr2AlTlCo2O7 mp-1252241 Pr3(Al2Si3)2 mp-571302 Ag2PdAu mp-1096329
43 Ba2AlTlV2O7 mp-1265780 Sr2(BiPd)3 mp-1207133 Ag3AuS2 mp-34982
44 Ba2CaTl2(CuO4)2 mp-6885 Na3HoTi2Nb2O12 mp-676988 PmRh2Pb mp-862958
45 Sr2LaCu2(BiO4)2 mp-1209034 Sr2YCu2BiO7 mvc-280 PmPd2Pb mp-862950
46 Ba2AlTlV2O7 mvc-3002 Na3DyTi2Nb2O12 mp-689927 Sr2PrTlCu2O7 mp-1208792
47 Ba2Mg3Tl2(FeO3)4 mvc-28 Rb3NaRe2O9 mp-1209462 InAg2Au mp-1093943
48 Sr2DyCu2(BiO4)2 mp-1209149 Sr3Fe2Ag2S2O5 mp-1208725 Ag2SnBiS4 mp-1229127
49 Ba2CuHgO4 mp-6562 Ba2Pr(CuO2)3 mp-1228546 Sb3Au mp-29665
50 Ba2Tl2W3O10 mvc-3144 Ce3(Al2Si3)2 mp-29113 PmAg2Pb mp-862876

We compare the top-50 neighbours of the Hg-1223 superconductor obtained by using our embedding and two hand-crafted

descriptors (Ewald sum matrix and sine Coulomb matrix) [22]. The query material, Hg-1223 (HgBa2Ca2Cu3O8), has the highest

known Tc (134K) at ambient pressure. Quite impressively, the neighbour list obtained by our embedding seems to be completely filled

with superconductors, including the well-known Hg-1224 (No. 1) and Hg-1212 (No. 2) as well as Tl-based high-Tc superconductors

such as Tl-2234 (No. 8), Tl-1234 (No. 32), and Tl-2212 (No. 44). By contrast, the lists obtained by the two existing descriptors contain

irrelevant materials rather than superconductors. These results clearly show that our approach captures the conceptual similarity

between superconductors, which is undetectable by the existing descriptors. See also the SI (appendix A3) for the detailed procedures of

the descriptor computations and more discussions.
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being transition metals, were found within the top-10 neighbourhoods of LiCoO2 (see table 2), including
important battery materials LiNiO2 families. Spinels as another important family were found as LiNi2O4 at
the 51th neighbour and LiCo2O4 in the 200s neighbours. The polyanion family, the remaining one of three
major cathode families, were not placed in the vicinity of LiCoO2 but formed a distinctive cluster at the top
edge in figure 3(a). Interestingly, all of these materials were developed by the group of Nobel laureate John
Goodenough [5]. This fact suggests that the embeddings capture conceptual similarity among the battery
materials that previously required one of the brightest minds of the time to be discovered.

Note that our method properly links substituted materials and the original material without being
confused by ad hoc supercell expression (e.g. Li4Co3NiO8 = LiCo0.75Ni0.25O2). This advantage is particularly
noticeable in comparison with embeddings constructed using conventional features (table 2). This result
indicates that our approach can recognise the essential structural features without being affected by
superficial differences (i.e. the number of atoms or the size of the unit cell).

Additionally, we analysed the vicinities of magnetic materials, including 2D ferromagnets, which are
attracting much attention for their interesting properties [41], and commercial samarium–cobalt (Sm–Co)
permanent magnets. Again, the embeddings capture meaningful similarity in these material classes, as shown
in figures 7 and 8, which is often not evident to non-specialists (see appendix A1 in the supplementary
information (SI) for more discussions and detailed results).

These in-depth analyses across diverse materials consistently support the conclusion that our ML model
recognises similar functionalities of materials behind different structures without being explicitly taught to
do so. We anticipate that when a material with beneficial properties is found, we may be able to screen for
new promising candidates based on the conceptual similarities captured in this embedding space.

2.3. Performance validation as a materials descriptor
Here we provide quantitative insight into characteristics of embeddings. Particularly, we analyse the
performance of predicting material properties using trained embeddings as input. As we are more interested
in predicting functional material properties, we conducted a binary classification task of materials concepts,
in which an ML model predicts whether a material belongs to a particular material class or not.

We expect that our embeddings contain the information of materials concepts. If so, we can rapidly
screen materials with a desired concept from a material database by combining the embeddings with an ML
model. However, properly labelling materials with their concepts requires experiments or consideration by
experts, and thus the number of available labelled data for a given concept is likely to be limited. Therefore,
as a benchmark and a use case for our embeddings, we evaluated the materials concept classification in the
settings of few training data.

As benchmark materials, we used superconductors and thermoelectric materials for their complex and
interesting properties. We used the Crystallography Open Database (COD) as the data source. The number
of positive data used for training was 469 for superconductors and 286 for thermoelectric materials.
Embeddings of these materials were obtained by the crystal structure encoder trained on the MP dataset via
deep metric learning, and were used as input to a random forest classifier. As a baseline for comparison, we
used latent feature vectors of crystal graph convolutional neural network (CGCNN) trained for total energy
prediction, as in appendix C. We evaluated the prediction performance with leave-p-groups-out
cross-validation while varying the training data size. Here, both the training and testing splits were made to
contain balanced positive and negative samples.

As shown in figure 9, the classifier using our embeddings obtained good classification performance for
both superconductors and thermoelectric materials. In particular, when the number of training data is very
small (around 10), our method shows significantly better performance than the baseline. We will more
discuss these results in the next section.

3. Discussions

As assumed, materials concepts were exposed spontaneously in an abstract space. As we confirmed in the
numerical evaluations of the training task of metric learning (appendix B in SI), this space was shown to
successfully unify the two complementary factors of crystal structures. We hypothesise that these remarkable
properties of our embeddings were made possible by the following two key features of our method that are
distinctive from the existing material embedding methods [25–29]. First, we used deep metric learning,
which directly optimises the spatial arrangements of the embedding vectors via a loss in terms of the
Euclidean distances between them. This procedure is critically different from the existing methods [25–29],

9
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Table 2. The top-50 neighbours of LiCoO2 in comparison with hand-crafted descriptors.

Our embedding Ewald sum matrix Sine Coulomb matrix

No. Formula ID Formula ID Formula ID

Query LiCoO2 mp-22526 LiCoO2 mp-22526 LiCoO2 mp-22526
1 Li14MgCo13O28 mp-769537 LiNiO2 mp-25587 LiCoO2 mp-1222334
2 Li4Co3NiO8 mp-867537 Co(HO)2 mp-24105 CoHO2 mp-27913
3 Li3Fe(CoO3)2 mp-761602 LiFeO2 mp-1222302 LiCoF2 mp-1097040
4 Li3(CoO2)4 mp-850808 LiNiO2 mp-25316 LiCoN mp-1246462
5 Li3MnCo3O8 mp-774219 Li2NiO2 mp-19183 Li2CoN2 mp-1247124
6 Li20(CoO2)21 mp-532301 MgMnN2 mp-1247154 Be5Co mp-1071690
7 Li3CrCo3O8 mp-849768 Li2CaCd mp-1096283 Be3Co mp-1183423
8 Li3MnCo3O8 mp-758163 NiO2 mp-25210 Be2Co mp-1227342
9 Li8FeCo9O20 mp-764865 LiFeOF mp-775022 CoCN mp-1245659
10 Li3Co2NiO6 mp-765538 MnO2 mp-1221542 Li3Co mp-976017
11 Li3CrCo3O8 mp-759149 Co(HO)2 mp-625939 Li2CoO2 mp-755133
12 Li3TiCo3O8 mp-757214 Co(HO)2 mp-625943 Li2CoO2 mp-755297
13 Li4MgCo3O8 mp-754576 Li2CuO2 mp-1239022 Be12Co mp-1104193
14 Li5Co2Ni3O10 mp-769553 CoO2 mp-1062939 CoO2 mp-1181781
15 Li(CoO2)2 mp-552024 NaCoO2 mp-1221066 CoO2 mvc-13108
16 Li14Co13O28 mp-777836 NiO2 mp-634706 Co(HO)2 mp-626708
17 Li3(NiO2)5 mp-762165 MgMnO2 mp-1080243 Co(HO)2 mp-625939
18 Li2CoO2F mp-764063 LiCuF2 mp-753098 Co(HO)2 mp-625943
19 Li2(CoO2)3 mp-758539 Ni(HO)2 mp-625074 Co(HO)2 mp-24105
20 Li5Fe2Co3O10 mp-769566 CrO2 mp-1009555 CoO2 mp-1062939
21 Li2CoNi3O8 mp-752703 CoHO2 mp-27913 CoO2 mp-1062643
22 Li10Fe3Co7O20 mp-760848 NaLi2As mp-1014873 CoO2 mp-556750
23 Li7Co5O12 mp-771155 LiNiO2 mp-25411 CoH3 mp-1183678
24 Li3(NiO2)4 mp-755972 Li2CoO2 mp-755133 CoH mp-1206874
25 Li9Ni15O28 mp-759153 LiCuO2 mp-754912 CoO2 mp-1063268
26 Li20Co21O40 mp-685270 CrN2 mp-1014264 CoN mp-1008985
27 Li7(NiO2)11 mp-768079 MgCr mp-973060 CoN mp-1009078
28 Li2(NiO2)3 mp-762391 Ni(HO)2 mp-1180084 FeHO2 mp-755285
29 Li4Co2Ni3O10 mp-778996 Co(HO)2 mp-626708 LiFeO2 mp-1222302
30 Li2Co3NiO8 mp-757851 Ni(HO)2 mp-27912 LiFeO2 mp-19419
31 LiCoNiO4 mp-754509 VO mp-19184 CoBO3 mp-1183397
32 Li4(NiO2)7 mp-774600 Be4AlFe mp-1227272 LiFeOF mp-775022
33 Li(CoO2)2 mp-774082 FeO2 mp-1062652 LiNiO2 mp-25411
34 Li(CoO2)2 mp-752807 LiCoF2 mp-1097040 NiHO2 mp-1067482
35 Li8(NiO2)11 mp-758772 LiFeO2 mp-19419 Li4Co(OF)2 mp-850355
36 Li3CoNi3O8 mp-774300 Na2NiO2 mp-752558 NiHO2 mp-999337
37 Li2CoNi3O8 mp-1178042 Li2CuO2 mp-4711 LiNiO2 mp-25587
38 Li7(NiO2)8 mp-690528 Li2CoO2 mp-755297 LiNiO2 mp-25316
39 Li10Co3Ni7O20 mp-769555 MgCr mp-1185858 LiFeO3 mp-1185320
40 Li7Ni13O24 mp-758593 Sc2CO mp-1219429 LiFeN mp-1245817
41 Li9Co7O16 mp-1175506 MnBO3 mp-1185996 CoNF3 mp-1213745
42 Li3Cr(CoO3)2 mp-761831 VN mp-1001826 LiNiO3 mp-1185261
43 Li2Co3NiO8 mp-778768 NiHO2 mp-999337 Li4FeN2 mp-28637
44 Li2FeCo3O8 mp-1177976 CrO mp-19091 LiNiN mp-29719
45 Li4Co3(NiO4)3 mp-777850 Ni(HO)2 mp-625072 Be3Fe mp-983590
46 Li3Al2CoO6 mp-1222591 VN mp-925 NiO3 mp-1209929
47 Li(NiO2)2 mp-752531 GaH6N2F3 mp-1224894 Be5Fe mp-1025010
48 LiFeO2 mp-19419 Fe(HO)2 mp-626680 Li2FeO2 mp-755094
49 Li4AlNi3O8 mp-1222534 CrN mp-1018157 Be12Fe mp-1104104
50 Li3CoNi3O8 mp-757871 VN mp-1018027 FeB2 mp-569376

We compare the top-50 neighbours of LiCoO2 obtained by using our embedding and two hand-crafted descriptors (Ewald sum matrix

and sine Coulomb matrix) [22]. The query material, LiCoO2, is one of the most crucial lithium-ion battery cathodes. In the list of our

embedding, the many neighbours of LiCoO2 are occupied by LiCo1−xMxO2 families with the same layered structure as LiCoO2 but

partly substituted with different transition metals M. Since these partial substitutions are represented as supercells, the system’s apparent

size is larger than the original unit cells. Our approach is unaffected by these apparent differences and can recognise the essential

similarities. While most of our list is filled with lithium oxides, the other two lists obtained by the existing descriptors do not suggest this

consistent trend. These results suggest that our model recognises the concept of lithium-ion battery cathodes, which is not captured by

the existing descriptors. See also the SI (appendix A3) for the detailed procedures of the descriptor computations and more discussions.
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Figure 7. Crystal structures of the 2D ferromagnet Cr2Ge2Te6 and its neighbours in the embedding space. The double discoveries
of 2D ferromagnets in 2017, after long questioning their existence, are gathering great interest from the magnetic materials
community [41]. When we analysed the neighbourhoods of one of these 2D ferromagnets, Cr2Ge2Te6 (mp-541449), our
embedding space successfully captured CrSiTe3 (mp-3779), a compound known as a potentially 2D-ferromagnetic insulator, as
the first neighbour and even the other 2D ferromagnet CrI3 (mp-1213805) as the 15th neighbours among 122 543 materials.
More detailed results and discussions are given in the SI (appendix A1).

Figure 8. Crystal structures of the Sm2Co17 permanent magnet and its neighbours in the embedding space. Here we highlight two
compounds in the neighbourhood list of Sm2Co17: SmCo5 and SmCo12. Sm2Co17 and SmCo5 are the two major components in
Sm–Co magnets often used in high-temperature environment, whereas SmCo12 is one of the compounds with the so-called 1–12
structure that has been drawing attention for its potential for permanent magnets. In the neighbourhoods of Sm2Co17
(mp-1200096) in our embedding space, we found SmCo12 (mp-1094061) as the 255th neighbour and SmCo5 (mp-1429) around
the top 0.5% neighbourhoods. It is well known in the community that the crystal structures of Sm2Co17, SmCo5, and SmCo12
have close connections with each other [4]. However, without the literature context and proper visualisation, it is difficult for a
human analyst to recognise these connections. More detailed results and discussions are given in the SI (appendix A1).

which learn embeddings indirectly as DNN’s latent vectors. Although these latent vectors should encode
essential information about materials, the explicit metric optimisation of embeddings is equally important
for map creation and similarity learning. Second, our self-supervised learning is enabled by exploiting two
forms of inputs expressing complementary structural characteristics: a set of atoms in the unit cell with their
connections as the local characteristics and the XRD pattern, which is essentially a Fourier transformed
crystal structure [1], as the periodic characteristics. Representation learning is known to be generally more
well-informed when diverse multi-modal data are used for training [44]. In contrast to approaches that rely
on single forms of materials data expression [25–29], our model benefits from learning across two forms of
expression, or cross-modal learning.

The results of the materials concept classification (figure 9) clearly support these hypotheses. Remind
that the baseline method (CGCNN [12]) learns embeddings as latent vectors in a DNN with only crystal
structures as input, whereas our method uses the same DNN but trains it along with another DNN for XRD
patterns in cross-modal deep metric learning. Thus, the performance advantage of our method directly
indicates the benefit of the proposed cross-modal deep metric learning approach. We believe that our
method using both crystal structures and XRD patterns helped the ML model to capture local motifs and
lattice more effectively, which contributed to better learning of structural patterns correlated to material
functionality and thus better recognition of materials concepts. We expect that incorporating more diverse
structure representations of materials such as electronic structure into our multi-modal learning framework
will further benefit the representation learning of materials. We leave such extensions as future work.
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Figure 9. The prediction performance of materials concepts. For superconductors and thermoelectric materials, embeddings
obtained by our DML approach show higher performance especially when the size of the training dataset is very small. The
embeddings of the baseline were latent vectors of CGCNN trained to predict total energy from crystal structures, as done by
Xie et al [12].

To provide more insight into the difference between our method and the baseline (CGCNN), we further
analysed the performance of these methods for physical property prediction (see appendix C in SI for
details). Similarly to the materials concept classification, we trained random forest models to predict
materials properties, such as total energy, space group, and density, from learned embeddings. Our
embedding outperformed the baseline in predicting density and space group and performed comparably in
total energy and magnetisation (figure S1 in SI). This result confirms that our embeddings indeed capture
lattice information in crystal structures more effectively than the single-modal baseline using only crystal
structures. Performing comparably in total energy prediction is also notable, because the embeddings of the
baseline are trained to specifically predict total energy itself using rich supervision from density functional
theory calculations while our embeddings are not.

A major interest in the proposed method given its good predictive power is whether it has potential
utility for new material discovery. To investigate such possibilities, we conducted a simple test to see if our
model can re-discover superconductors known in the literature but not included in the training dataset. To
this end, we borrowed the COD’s superconductors from the concept classification (figure 9) and, after
removing overlaps with the MP’s training dataset, we mapped their embeddings in the MP’s embedding
distribution presented in figure 3. As shown in appendix E, these COD’s superconductors are most
intensively concentrated around the superconductor cluster in the MP’s training materials, despite the fact
that these COD’s materials are novel to the model. This result suggests a screen method of new candidate
materials by using our model trained on a database of known materials.

Another notable strength of our method over existing material embedding methods is that it does not
require costly annotations and can be trained using only primitive structural information (i.e. crystal
structures and their XRD patterns). This makes our method applicable to a wide range of datasets. Even
when annotations are available, our self-supervised approach will benefit many users as a means of
pre-training. Pre-training is a general ML technique performed on a large-scale dataset to help an ML model
for other tasks where annotated training data are limited [45]. Our self-supervised learning is suitable for this
purpose, because it can be performed given only crystal structure data and can thus utilise various material
databases at scale.

When compared to classic material descriptors such as the Coulomb matrix variants [22], our method
has advantages in terms of its scalability and ability to capture high-level material properties. See tables 1, 2
and the SI (appendix A3) for analysis results and more discussions.

Since the focus of our study was on learning material similarity from unannotated structural data, the
resulting map requires manually interpreting clusters on the basis of our knowledge of materials concepts.

12



Mach. Learn.: Sci. Technol. 3 (2022) 045034 Y Suzuki et al

Interestingly, a word2vec model [26] has been applied to text symbols appearing in the materials science
literature, thus learning relationships such as the connections between ‘Fe’ and ‘metal’ and between ‘Sm–Co’
and ‘magnet’. Use of this technique may further automate the interpretation of our results with literal
knowledge.

4. Conclusions and broader impacts

In summary, we have demonstrated the self-supervised learning of material embeddings solely from crystal
structures using DNNs. Careful inspection of the embedding space, in terms of both the global distribution
and local neighbourhoods, has confirmed that the space recognises functionality-level material similarity or
materials concepts. Our techniques for the materials space visualisation and the similarity evaluation between
crystal structures will be useful for discovering new underlying relationships among materials and screening
for new promising material candidates. Since these techniques are not strongly affected by human bias, they
could give rise to a new view of materials that can stimulate efforts to break through our knowledge barriers.

Our result is also applicable to material retrieval systems that can search for conceptually similar
materials in a database given a query material. This approach will enable us to rediscover materials that have
never been recognised to have preferable properties.

Furthermore, constructing a functionality-aware representation space of crystal structures is a first step
towards the inverse design of materials [8, 46], a grand challenge of materials informatics. This workflow
would allow us to design materials in the functionality space and inversely map the functionality attributes to
synthesisable crystal structures with the desired properties. We hope that this study will pave the way for
breakthroughs in the ML-assisted discovery and design of materials.

5. Methods

5.1. Data acquisition and pre-processing
We used the Materials Project as the data source for this study. We collected data for up to quintet systems,
excluding monatomic crystals, on 8 July 2020, using the Material Project APIs, which resulted in a total of
122 543 materials (93% of the source collection) as our targets. We additionally queried thermodynamic
stability material attributes on 14 October 2020. We used VESTA [47] for crystal structure visualisation. We
calculated the XRD patterns using pymatgen [48]. The x-ray wavelength was set to 1.54 184Å (Cu Kα1), and
the 2θ angle ranged from 10◦ to 110◦ with a step size of 0.02◦; thus, 5000-dimensional vectors of
1D-structured XRD patterns were produced. To ease the learning process, the intensity scale of each XRD
pattern was normalised by setting the maximum intensity to 1.

5.2. Neural network architecture
As illustrated in figure 2(a), we used two types of DNNs as embedding encoders. For the crystal-structure
encoding, we need to convert a set of arbitrary number of atoms (i.e. the atoms in the unit cell) into a
fixed-size embedding vector in a fashion invariant to the permutation of atom indices. For this purpose, we
used CGCNNs [12]. As input to CGCNN, the 3D point cloud of the atoms in the unit cell is transformed
into a graph of atoms whose edge connections are defined by their neighbours within a radius of 8 Å. The
atoms in the graph are represented as atom feature vectors and are transformed into a single fixed-size
feature vector via three graph convolution layers and a global pooling layer. For the XRD patterns, we used a
standard feed-forward 1D convolutional neural network designed following existing studies on XRD pattern
encoding [49]. At the end of each network, we used three fully connected layers to output 1024-dimensional
embedding vectors. Since one of these encoders is supervised by the output of the other in our
self-supervised learning approach, training them simultaneously tends to be unstable compared to standard
supervised learning. To stabilise the training process, we found that batch normalisation [50] is essential after
every convolutional/linear layer in both networks except for the final linear output layers. We discuss this
further in the SI (appendix B). Further details of our network architecture are provided in the SI (tables S6
and S7 in appendix D) and our ML model codes.

5.3. Training procedures
In each training iteration, we processed a batch of N input material samples. Let xi and yi be a pair of
embedding vectors produced for the ith crystal structure in a batch and its XRD pattern, respectively. For
each positive pair (xi,yi), we randomly drew two kinds of negative samples x ′

i and y ′i , representing a crystal
structure and an XRD pattern, respectively, from the batch to form two triplet losses:
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L(i)nx (xi,yi,x
′
i ) =max(0,∥xi − yi∥−∥x ′

i − yi∥+m), (1)

L(i)ny (xi,yi,y
′
i ) =max(0,∥xi − yi∥−∥xi − y ′i ∥+m), (2)

where the negative sample x ′
i was chosen from {xk}k̸=i to produce a positive-valued loss, L

(i)
nx > 0, and y ′i was

chosen similarly from {yk}k ̸=i (see also figure 2(b) for illustrations). Here,m> 0 is a hyperparameter called
the margin. Equation (1) essentially requires that for each embedding yi, its negative samples x ′

i are cleared
out of the area surrounding yi having the radius of the positive-pair distance ∥xi − yi∥ (red circle in the
top-right part of figure 2(b) plus the marginm (yellow area in the figure). Equation (2) is defined similarly.
These losses are thus to ensure, given an embedding as a query, that its paired embedding is retrievable as the
query’s nearest neighbour. Note that the choice of the marginm is quite flexible because its value is relevant
only to the scales of the embeddings, which are unnormalised and arbitrarily learnable. Here,m= 1. Our
bidirectional triplet loss was then computed as the average of the losses for all samples in the batch as follows:

L=
1

2N

N∑
i=1

(L(i)nx + L(i)ny ). (3)

This expression is similar to but simpler in form than a loss expression previously used in cross-modal
retrieval [51].

We optimised the loss function using stochastic gradient descent with a batch size N equal to 512. Using
the Adam optimiser [52] with a constant learning rate of 10−3, we conducted iterative training for a total of
1000 epochs for all target materials in the dataset. The training took approximately one day using a single
NVIDIA V100 GPU. For details regarding our strategies for validating the trained models and tuning the
hyperparameters (e.g. choices of the embedding dimensionality and training batch-size), see appendix B and
table S5 in the SI.

5.4. Data acquisition for the concept classification tasks
For the materials concept classification, we collected the crystal structure data of superconductors and
thermoelectric materials from COD. To collect positive samples for each category, we retrieved material
entries containing certain keywords in their paper titles as positive samples. Specifically, the entries including
‘superconductor’ or ‘superconductivity’ in their titles were regarded as superconductors, and the entries
including ‘thermoelectric’ or ‘thermoelectricity’ were regarded as thermoelectric materials. The same
number of material entries without these keywords were randomly collected and used as negative samples.

Data availability statement

The materials data retrieved from the Materials Project, the trained embeddings of these materials, and the
trained ML model weights are available at the figshare repository [53]. The list of the target materials used in
this study, the lists of the neighbourhood search results, and interactive web pages for exploring the materials
map visualisation and analysing local neighbourhoods are available in the GitHub repository (https://github.
com/quantumbeam/materials-concept-learning).
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