
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

No-reference perceptual CT image quality
assessment based on a self-supervised learning
framework
To cite this article: Wonkyeong Lee et al 2022 Mach. Learn.: Sci. Technol. 3 045033

 

View the article online for updates and enhancements.

You may also like
Image quality guided iterative
reconstruction for low-dose CT based on
CT image statistics
Jiayu Duan and Xuanqin Mou

-

Engineering non-equilibrium quantum
phase transitions via causally gapped
Hamiltonians
Masoud Mohseni, Johan Strumpfer and
Marek M Rams

-

Zn–VI quasiparticle gaps and optical
spectra from many-body calculations
A Riefer, N Weber, J Mund et al.

-

This content was downloaded from IP address 106.213.28.225 on 07/07/2023 at 12:49

https://doi.org/10.1088/2632-2153/aca87d
/article/10.1088/1361-6560/ac1b1b
/article/10.1088/1361-6560/ac1b1b
/article/10.1088/1361-6560/ac1b1b
/article/10.1088/1367-2630/aae3ed
/article/10.1088/1367-2630/aae3ed
/article/10.1088/1367-2630/aae3ed
/article/10.1088/1361-648X/aa6b2a
/article/10.1088/1361-648X/aa6b2a


Mach. Learn.: Sci. Technol. 3 (2022) 045033 https://doi.org/10.1088/2632-2153/aca87d

OPEN ACCESS

RECEIVED

6 September 2022

REVISED

25 November 2022

ACCEPTED FOR PUBLICATION

2 December 2022

PUBLISHED

29 December 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

No-reference perceptual CT image quality assessment based on a
self-supervised learning framework
Wonkyeong Lee1,5, Eunbyeol Cho1,5, Wonjin Kim1,5, Hyebin Choi1, Kyongmin Sarah Beck2, Hyun Jung Yoon3,
Jongduk Baek4 and Jang-Hwan Choi1,∗
1 Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans
University, Seoul, Republic of Korea

2 Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Republic of Korea, Seoul,
Republic of Korea

3 Department of Radiology, Veterans Health Service Medical Center, Seoul, Republic of Korea
4 Department of Artificial Intelligence, Yonsei University, Seoul, Republic of Korea
5 These authors contributed equally to this work.
∗ Author to whom any correspondence should be addressed.

E-mail: choij@ewha.ac.kr

Keywords: computed tomography, perceptual image quality, radiation dose, self-supervised learning,
no-reference image quality assessment

Abstract
Accurate image quality assessment (IQA) is crucial to optimize computed tomography (CT) image
protocols while keeping the radiation dose as low as reasonably achievable. In the medical domain,
IQA is based on how well an image provides a useful and efficient presentation necessary for
physicians to make a diagnosis. Moreover, IQA results should be consistent with radiologists’
opinions on image quality, which is accepted as the gold standard for medical IQA. As such, the
goals of medical IQA are greatly different from those of natural IQA. In addition, the lack of
pristine reference images or radiologists’ opinions in a real-time clinical environment makes IQA
challenging. Thus, no-reference IQA (NR-IQA) is more desirable in clinical settings than
full-reference IQA (FR-IQA). Leveraging an innovative self-supervised training strategy for object
detection models by detecting virtually inserted objects with geometrically simple forms, we
propose a novel NR-IQA method, named deep detector IQA (D2IQA), that can automatically
calculate the quantitative quality of CT images. Extensive experimental evaluations on clinical and
anthropomorphic phantom CT images demonstrate that our D2IQA is capable of robustly
computing perceptual image quality as it varies according to relative dose levels. Moreover, when
considering the correlation between the evaluation results of IQA metrics and radiologists’ quality
scores, our D2IQA is marginally superior to other NR-IQA metrics and even shows performance
competitive with FR-IQA metrics.

1. Introduction

Computed tomography (CT) is one of the fundamental tools for diagnosing patients. One of the most
important principles of using CT is to keep the radiation dose to ‘as low as reasonably achievable
(ALARA)’ [1]. To achieve the aim of this principle, we need to optimize the tradeoff between CT image
quality and radiation dose. By navigating this tradeoff, it is possible to find the optimal radiation dose with
acceptable CT image quality. However, the estimation of CT image quality still suffers from the absence of
standard assessment; thus, image quality assessment (IQA) is an active area of research in the field of image
processing and technology.

Although research on the development of natural image perceptual quality evaluation with RGB color
channels has been actively conducted [2], studies on the assessment of grayscale CT image quality are
relatively weak. This is because there are many difficulties in developing CT IQA metrics. First, each modality

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/aca87d
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/aca87d&domain=pdf&date_stamp=2022-12-29
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9273-034X
mailto:choij@ewha.ac.kr


Mach. Learn.: Sci. Technol. 3 (2022) 045033 W Lee et al

of medical imaging has its own characteristics and artifacts that are not found in natural images. Second,
there is a lack of datasets for CT IQA, while there exist many publicly available datasets for natural IQA, such
as LIVE [3], CSIQ [4], TID2013 [5], and PIPAL [6]. Third, considering radiation-induced risk to the patient,
high-dose reference images cannot be easily acquired. This limits the performance testing of developed CT
IQA and the development of full-reference IQA (FR-IQA). Last but not least, in medical images, it is difficult
to define overall image quality with one quantitative evaluation measure. The reason is that when evaluating
medical images, not only the visual quality of an image but also its diagnostic quality must be considered [7].
In clinical practice, diagnostic quality should be evaluated very specifically for each pathology, as local
anatomical information to be analyzed in an image differs across each pathology. For example, when
radiologists evaluate abdominal CT images, they focus on whether the visibility of major organ structures
(e.g. small and large bowel, liver parenchyma, kidney, etc) is suitable for diagnosis [8, 9] rather than placing
the same ‘attention’ on the entire image.

For these reasons, no-reference IQA (NR-IQA) is desirable for CT in clinical settings and should be
developed while utilizing the existing datasets, assessing without reference images, and gauging the
diagnostic accuracy. Especially regarding the last reason, model observers have been widely researched in CT
IQA, which can estimate specific task performance on CT images [10]. However, the existing tasks of model
observers are mainly binary classification (e.g. classifying patients as either normal or pathological or signals
as absent or present) and do not fully reflect the integrity of local anatomical information, which is different
for each pathology across evaluations of diagnosis quality. Therefore, these approaches do not mimic the real
task of daily diagnosis assumed by radiologists. Moreover, these task-based models require the synthesis of
realistic lesions with complex textures and various sizes incorporating known internal noise and anatomical
backgrounds for each organ (e.g. liver [11], lung [12], and breast [13]) and evaluate the quality of a CT
image based on the detectability of the inserted lesion. However, the process of generating a lesion by
reflecting system- or organ-specific information is difficult to reproduce, and, thus, it is not generally
applicable to various organs or less well-known acquisition systems.

In this study, considering the above limitations of existing studies, we propose an automated
self-supervision-based NR-IQA metric that is more clinically relevant and easily reproducible. Here, by
simulating the experimental setup of image quality evaluation by radiologists, a convolutional neural
network (CNN)-based object detection model reads stacks of images containing virtual low-contrast objects.
In order to evaluate the quality of a single image, the detector attempts to find the virtual object inserted in
the image multiple times, and the resulting mean average precision (mAP) value of these multiple trials is
defined as a quantitative value of IQA. At this time, unlike prior model observer studies, not only the
parameters (i.e. shape, contrast level, and size) of the virtual objects but also their position and number per
image are changed randomly for every trial and unknown to the detection models. Note that the positioning
of the object is not completely random, and, considering that radiologists mainly focus on major organ
structures with rich textural details rather than uniform regions or background, the object is randomly
placed within the found saliency area. In this respect, our proposed method can be said to be more clinically
relevant.

Moreover, we model the virtual objects with geometric shapes to be inserted in CT images. Such simple
virtual objects can be defined by simple mathematical formulae, and there is no need to consider
system-specific noise, organ-specific background, or the complex shape of realistic lesions to generate the
virtual objects. Therefore, our approach can generally be applicable to various organs or less well-known
acquisition systems and is thus more reproducible.

Lastly, this approach enabled us to implement self-supervised learning to train the detector network, so
no forms of annotations or labels are required. Once we trained the network with CT images with the virtual
objects inserted, we did not use any high-quality reference images to estimate the IQA score of each image.
Considering that a CT image corresponding to the maximum radiation dose cannot be easily obtained in a
clinical environment in consideration of patient health, our approach can be more easily applied to clinical
practice.

The main contributions of this paper are as follows:

• We present a novel NR-IQAmetric for CT images with virtual objects inserted utilizing a CNN-based object
detection model. The resulting detection performance (mAP) is converted to an accurate measure of IQA
score.

• We propose a self-supervised training strategy for CT IQA by detecting the inserted virtual objects. The
objects are of geometrically simple forms and thus can be generally applicable.

• Moreover, the configurations of the virtual objects (i.e. shape, contrast level, size, position, and number
per image) change randomly for every detection trial and are unknown to the detection models, lending to
greater clinical relevance compared to model observers.
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• Rigorous evaluations of clinical and phantom data reveal that our IQAmetric showed superior performance
over existing NR-IQAmetrics and even comparable performance to FR-IQAmetrics in terms of correlation
with radiologists’ perceptions.

• Lastly, to promote research in this field, we have constructed and opened a library of CT images with their
associated IQA scores provided by radiologists.

2. Related works

IQA metrics have been developed to measure the perceptual image quality, which can be used to provide
scores related to how humans perceive images from the perspective of perceptual quality. They are used by
giving the metrics of algorithms images after degradation or post-processing. IQA can be divided into
FR-IQA and NR-IQA. FR-IQA methods measure the similarity between an image of interest and a
high-quality reference image. They have been widely used in the evaluation of image/video coding,
restoration, and communication. Mean-squared error (MSE), peak signal-to-noise ratio (PSNR), and
structural similarity (SSIM) [14] are some metrics that are still widely used for evaluation. However, these
have limitations because they cannot fully represent human perception. For this reason, data-driven methods
were also investigated for IQA [15, 16]. NR-IQA metrics are proposed to assess image quality without
reference images because reference images are not always available for IQA. Natural image quality evaluator
(NIQE) [17], Ma et al [18], blind/referenceless image spatial quality evaluator (BRISQUE) [19], and
perception-based IQE (PIQE) [20] are representative NR-IQA methods. Blau et al [21] combined FR-IQA
and NR-IQA methods to evaluate image restoration algorithms. Even though many algorithms are
developed, only a few IQA methods (e.g. PSNR and SSIM) are commonly used for the evaluation of image
restoration methods.

CT IQA metrics have been researched considering their own characteristics. MSE, PSNR, and SSIM have
been used for CT IQA as basic guidelines for the evaluation of algorithms; however, they do not correlate well
with human perception and have little relationship with diagnostic utility [22]. Some classical methods
for the estimation of CT IQA are the modulation transfer function and the noise power spectrum
(NPS) [23, 24]. These methods assume that the imaging systems are shift-invariant and linear. Thus, if these
assumptions are not valid, new methods for CT IQA need to be developed [25, 26].

3. Methods

3.1. Task definition
We propose a CT IQA framework that can be seen as clinically relevant to the simulation of radiologists’ IQA
tasks in a clinical setup. To mimic the radiologists’ IQA task, our model reads stacks of images containing
lesion-like virtual objects without knowing their configurations (i.e. shape, contrast, size, location, and
number per image). Since our proposed IQA model is based on a deep learning-based detector, we named it
the deep detector IQA (D2IQA). The goal of the D2IQA’s task is to detect lesion-like virtual objects in CT
images that are distorted with an unknown level of noise using a deep learning-based detector. This strategy
was motivated by the hypothesis that the accuracy of detecting virtual objects would be highest in
high-quality full-dose CT images, and objects distorted due to noise would degrade detection accuracy. In
other words, the mAP would be lower for more distorted images. Under this assumption, we set the average
mAP as the score of image quality. Additionally, the figure of merit is defined as the correlation coefficient
between the mean scores of radiologist evaluations and the scores predicted by D2IQA.

3.2. Overall framework of our proposed model
In this section, we describe the architecture of D2IQA and define our proposed model based on the data,
detector, and metrics of CT image quality. The data consists of different contrasts, sizes, shapes, and numbers
of virtual objects in arbitrary locations in CT images with various dose levels. Many object detectors are
trained with full supervision, but we propose a novel self-supervised task-based assessment method, D2IQA,
that does not require any form of ground truth score labels or reference images. Finally, using mAP from the
detector, we measure the image quality of CT images with different dose levels. The overall architecture of
our proposed method is shown in figure 1. D2IQA consists of two key parts, a data generator and an image
quality estimator. We propose a simple but efficient method to automatically generate synthetic lesion-like
virtual objects and their associated labels (i.e. object location and shape/class) via a data generator. These
self-made labels allow the detector to be trained in a self-supervised manner.
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Figure 1. The overall framework of the proposed deep detector image quality assessment (D2IQA).
⊗

represents the mAP
calculation between ground truth and the prediction.

Figure 2. Visualization of shape (a), contrast (b), and size (c) configurations of the virtual objects. The window level and width
are set to 0 and 0.2, respectively, for the convenience of visualization.

Figure 3. Line profiles comparing the contrast [−10% to+10%] of the virtual objects themselves (a) and that of the virtual
objects inserted in CT images (b). (b) The detailed textures in the original image, even with the object overlaid, are preserved.

3.2.1. Data generator
To train our proposed detector to mimic the task of radiologists, we modeled a data generator to insert
lesion-like virtual objects in CT images. We considered two things when we modeled the data generator:
(a) virtual objects should be simple enough to guarantee adequate model generalization, and (b) it should
have complex configurations so that the model can also discover useful feature presentations. A random
combination of four different shapes (circle, star, triangle, and square), six different contrast levels (±8%,
±9%, and±10%), and four different sizes (7, 8, 9, and 10 pixels) was set for each virtual object (see figure 2).
We inserted the virtual objects with such configurations, varying at each detection trial, at random positions
at a frequency ranging from two to five per CT image. The resulting line profiles of a virtual object inserted
in a CT image are illustrated in figure 3. These contrast and size values were chosen empirically to ensure that
the score predicted by D2IQA degrades monotonically as the image score goes down.
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Figure 4. Examples of intermediate result images shown during the virtual object insertion procedure. (a) shows the original
image, (b) is the saliency map, (c) shows arbitrary locations (marked with a red×) of the virtual objects in the binary map, and
(d) displays the resulting image with the objects inserted.

Table 1.Measurements of the 2D correlation coefficient (i.e. r) in 2D NPS and SSIM between the original images and the same images
with the maximum number (i.e. 5) of virtual objects to evaluate the similarity of the noise texture. The values in the parentheses indicate
standard deviations of the measurements.

Full-dose image Quarter-dose image

r in 2D NPS 0.99996 (1.5761× 10−5) 0.99997 (1.0568× 10−5)
SSIM 0.99897 (2.5171× 10−5) 0.99945 (1.7551× 10−5)

Using these carefully chosen values of contrast and size, the data generator inserts virtual objects. First, a
saliency map from each CT image is obtained using the methods developed by Perazzi et al [27]. With this
obtained saliency map, we discriminate patient anatomical bodies with rich textural details in CT images
from the image background. Then, we convert this saliency map to a binary map with a value of 0.4 so that
we can identify the anatomical background from the air. The virtual objects will be located in the binary map
at high-value indices. The next step is that we randomly choose several configurations for virtual objects
including the number of objects (2–5), size (7–10 pixels), and contrast (8%–10 %). We ensured that the
virtual objects could not be overlapped by locating each object at least 50 pixels apart from one another.
Then, these virtual objects are blurred by Gaussian blur with a 5× 5 kernel to make their edges blend well
with the background textures. Moreover, this edge blurring process prevents the detector model from being
trained to rely on sharp edge textures of high-frequency components that do not exist in human organs.
Finally, each virtual object is inserted at the sampled coordinates and rotated at an arbitrary angle.

Figure 4 represents the intermediate results of each step. By inserting artificial lesion-like objects in this
way, their corresponding labels (i.e. object location and shape/class) can be automatically obtained, which
allows us to train D2IQA in a self-supervised manner. Moreover, considering that the r in 2D NPS and SSIM
reported in table 1 are almost 1, the insertion of the low-contrast virtual objects in the image hardly changes
the original noise and image texture.

3.2.2. Image quality estimator.
We adopted the existing object detector, Cascade R-CNN [28] with a ResNet-50 [29] backbone, as a
detection model for the proposed image quality estimator. The image quality estimator and the existing deep
learning-based detector have the same method for detecting an object, but the image quality estimator is
trained in a self-supervised way with our data generator.

The inputs of the model are data pairs that consist of D= [(X1,B1), . . .,(Xn,Bn)]. Xi represents the CT
image containing the virtual object generated by the data generator, and Bi contains 2 to 5 annotations of b,
which is the self-made label of image patch x containing the bounding box coordinates bcoord and type of
each object g. When given an input CT image Xi, the model predicts B̂i = (b̂1, . . ., b̂n). b̂ represents
the annotation labels for each object; these labels consist of the set of bounding box coordinates
b̂coord = (x̂min, ŷmin, x̂max, ŷmax), the confidence score ĉ, and the predicted class label ĝ. All parameters of the
model are updated in a way that minimizes loss by comparing these predictions (b̂) to the labels (b).

The detector Cascade R-CNN resamples by the cascade regression of the three R-CNN detection stages
using different intersection over union (IoU) values. This cascade regression consecutively resamples objects
starting with sample (xi,bi) to (x ′i ,b

′
i ). Therefore, the loss function for each stage t is the sum of the cross

entropy Lcls for classification and the smoothed L1 loss Lreg for the bounding box regression of samples
produced by different IoU values, as was done in [28]:

L(b̂t,bt) = Lcls(ĝ
t, ft(b̂

t,bt))+ h( f t(b̂
t,b))Lreg(b̂

t
coord,b

t
coord) (1)
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in which

ft(b̂,b) =

{
g if IoU(b̂coord,bcoord)⩾ ut,

0 otherwise,
(2)

h( f) =

{
1 if f ⩾ 1,

0 otherwise,
(3)

where b̂t and bt are the predicted and the ground truth annotations at stage t, respectively, and ut is the IoU
threshold of stage t, which corresponds to 0.5, 0.6, and 0.7, in the order of detection stages. By using this loss
function, we used CT images to fine-tune the Cascade R-CNNmodel, which was pretrained on the ImageNet
dataset.

Note that randomly determined virtual object configurations can sometimes be relatively favorable for
the detector to predict. In order to alleviate the effect of some randomly chosen configurations that could
bias image quality scores, the detection task was performed multiple times per CT image with different
random configurations for each detection trial. Here, the average of the AP values calculated after multiple
detection tasks using the Microsoft Common Objects in Context [30] style AP calculation, which utilizes the
101 point interpolation method, are defined as the image quality score.

AP=
1

101

∑
r∈R

max
r̃⩾r

Precision(̃r) (4)

mAP=
1

C

C∑
i

APi, (5)

where R is a set of 101 numbers from 0 to 1 at interval of 0.01, and r̃ is the subset of R where each element is
greater than the recall value r. In addition, C is 4, and it represents the number of classes (i.e. the number of
shapes).

To find the optimal number of the model predictions, we found t satisfying the following condition:∣∣∣∣1t
t∑
i

si −
1

t− 1

t−1∑
i

si

∣∣∣∣< ϵ (6)

where si represents the mean of a set of mAPs reflecting 100 CT images with randomly synthesized virtual
objects, and t represents the number of sets of repetitions. We empirically obtained that the minimum value
of t is 5 when ϵ is 0.01. Thus, we ran 500 predictions on CT images that were differently synthesized from one
CT image, which can be computed in parallel. Then, we averaged the resulting mAP values to obtain the
quality score for the image.

In this study, Cascade R-CNN was chosen as a detector in the quality estimator. However, to test the
generalization ability of D2IQA, we conducted an experiment using three detector models. One of the
earliest, mid-term, and recent detector models was selected, which was Faster R-CNN [31], Cascade
R-CNN [28], and generalized focal loss [32], respectively. The models scored 4340 images with seven different
noise levels obtained from two patients to handle various image qualities. The Kruskal–Wallis [33] test
confirmed that the differences in the distribution of the image scores from the three different detectors were
not statistically significant (p⩾ 0.05) and the performance of D2IQA was not sensitive to the detector model
selection. Therefore, D2IQA is a framework that can be applied to various detector models. Nevertheless, the
reason for choosing the Cascade R-CNN model in this study is that the model is relatively sensitive to the
difference in image quality, and, as a result, the score difference between noise levels is widely spread.

4. Data and preprocessing

4.1. CT datasets
4.1.1. In-vivo clinical data
We used an axial view of abdominal CT images of ten patients from the 2016 Low Dose CT Grand Challenge
dataset [34], acquired using multi-detector CT scanners. The full-dose images were acquired using a

6
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Figure 5. Examples of clinical testing images containing virtually inserted objects. (a) shows examples of virtual objects with only
different configurations and locations. The objects in (a) are inserted in the clinical images at varying noise levels (b)–(h). The
window level and width are set to 50 and 350.

reference tube potential of 120 kV and a quality reference effective mAs of 200. Because there are only two
dose-level CT images (i.e. 100% and 25%) in this in-vivo clinical dataset, we followed an accurate
physics-based noise generation pipeline [35, 36] to insert Poisson noise into the projection data to achieve
seven different noise levels that corresponded to 100%, 50%, 25%, 20%, 12%, 7%, and 5% of the full-dose
noise (see section 4.1.2).

Clinical data were split into training, validation, and test sets. Training and validation data were
randomly divided from 7988 images from seven patients and finally consisted of 6390 training images and
1598 validation images. For the test data, we used the other two patients, containing a total of 1240 images.
The representative clinical testing images with the virtual objects inserted are displayed in figure 5.

4.1.2. Noise generation procedure for in vivo data
Because there are only two dose levels represented in the CT images (i.e. 100% and 25%) from the in-vivo
clinical dataset, images of various dose levels were created by synthesizing realistic noise with full-dose
images. Note that N0 is the average number of photons emitted during a given time interval. The mean
number of transmitted photons is a nonlinear function of the line integral of the attenuation coefficient
(Nd = N0 exp(−

´
µds)), where µ and s are the linear attenuation coefficient and a length element along the

photon path, respectively [37]. Then, the line integral in the detector bin i is computed as follows:

pi = ln
N0

κ
= lnN0 − lnκ (7)

where κ= Poisson(Nd) represents the number of transmitted photons at the bin i, and it is a random
variable following a Poisson distribution with a mean value Nd.

Following an accurate physics-based noise generation pipeline [35, 36], we inserted Poisson noise into
the projection data to obtain five additional noise levels that corresponded to 50%, 20%, 12%, 7%, and 5%
of the full-dose. Here, we acquired the projection data corresponding to the line integral by
forward-projecting full-dose CT images, resulting in 360◦ of projection data with the gantry rotated over 2π.
The generated noise in the 2D projection data is computed by

ñ2D = Poisson(Nd)−Nd. (8)

7
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Figure 6. Examples of phantom test images containing a virtually inserted object (a). The images have the same content but
contain different levels of noise (b)–(f). The window level and width are set to 50 and 350.

Then, the filtered back-projection algorithm was used to reconstruct the noisy 3D image ñ3D from ñ2D as
follows:

ñ3D = ATh(ñ2D), (9)

where AT and h denote the back-projector and the reconstruction kernel, respectively. Finally, we added the
reconstructed ñ3D to the original full-dose CT images to obtain CT images with various dose levels. These
processes were implemented in the CONRAD open-source package6. After we added these additional data to
the original dataset, we obtained a dataset with seven different dose levels corresponding to 100%, 50%,
25%, 20%, 12%, 7%, and 5% of the full-dose.

4.1.3. Anthropomorphic phantom data with real noise.
We also used an axial view of CT images from a different domain (i.e. anthropomorphic phantom data with
a relatively uniform background and real noise) to demonstrate that D2IQA is well-generalized across noise
and anatomy domains and is accurate in quantifying CT image quality. We scanned an anthropomorphic
phantom of the chest on a multislice CT scanner (GE). A fixed tube voltage of 120 kV was used for all images.
After acquiring a high-dose image using the routine CT acquisition protocols, low-dose image pairs were
acquired with a low tube current exposure time product (mAs) values corresponding to five different relative
dose levels, including 100%, 50%, 25%, 10%, and 5%. The high-dose data were augmented by fivefold by
creating five virtual object-inserted images for every one image to produce a total of 1204 training images
and 301 validation images. The test data were unseen during training and model evaluation and consist of 50
images for each dose and 250 images in total. The representative phantom test images containing virtually
inserted objects are displayed in figure 6.

4.2. Subjective image quality scores of expert radiologists
To evaluate the correlation between the scores generated by D2IQA and that of humans, we obtained image
quality scores from three radiologists with more than ten years of experience reading CT scans. Prior to
reading the images, all three radiologists underwent an instruction session on evaluation procedures, and
examples of the best (100% dose level) and worst (5% dose level) images were shown to the evaluators so

6 https://github.com/akmaier/CONRAD
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Table 2. A table for image quality scoring criteria.

Numeric score Verbal descriptive scale Diagnostic quality criteria

0–1 Bad quality Desired features are not shown
2–3 Poor quality Diagnostic interpretation is impossible
4–6 Fair quality Images are suitable for limited clinical interpretation
7–8 Good quality Images are good for diagnostic interpretation
9–10 Excellent quality Anatomical structure is highly visible

that they could establish the scoring criteria for image evaluation. Individual raters evaluated 30 sets of 150
images in total, where each set contained images with different random noise levels of each image. Each CT
image was evaluated with abdominal soft-tissue windows (width/level: 350/40). Finally, the image quality
scores for each image evaluated by the three radiologists were normalized to their mean and standard
deviation and averaged to determine the final human perceptual score for each image.

As to the scoring criteria, we considered that the quality of medical images should be evaluated by
reflecting the diagnostic quality of the radiographic images, and, thus, we carefully defined the clinically
relevant criteria for the diagnostic IQA. Clinical image quality is often evaluated on a variety of Likert scales,
mostly ranging from 3 to 5 [8, 38]. Therefore, a similar Likert scale made by these two studies was chosen for
our study with two minor changes. First, diagnosis tasks were added to our scoring criteria since a previous
study by Fang et al [8] pointed to the absence of specific diagnostic tasks in their subjective assessment as a
limitation of their study. According to the opinions of the three radiologists who participated in this study,
image noise, anatomical structure, and diagnostic interpretation including lesion detectability [39] were
considered in the subjective IQA scoring criteria. Second, we expanded the 5-point Likert scale to a 11-point
scale where a higher score represents higher image quality and vice versa. This was done to increase
evaluation accuracy. Through this approach, the sensitivity of each clinical image to different image qualities
will be better reflected in the scores. The image quality evaluation criteria are described in table 2.

5. Results and discussion

5.1. D2IQA score according to virtual object configuration and noise level
We first verified whether our proposed detector used in D2IQA works reasonably. The meaning of
‘reasonably’ here is whether our detector model shows a similar trend, just as the detectability of radiologists
varies depending on the size and contrast of the virtual object. To be specific, as the size and contrast of the
virtual object decreases, the detectability is expected to decrease. Table 3 shows the performance of our
detector model according to changes in the size and contrast of objects inserted at fixed positions in the
image. As expected, the detector’s performance sensitively deteriorates with smaller lesion size and lower
contrast, supporting that the detector model in D2IQA works reasonably.

We also found that the performance of our detector gradually decreased as the noise level of the images
increased, as shown in figure 7. This result supports our hypothesis that the accuracy of detecting virtual
objects would be the highest in high-quality full-dose CT images, and distorted objects due to noise would
cause the degradation of detection accuracy. The deterioration of the detector’s performance can be
explained by false positives and false negatives caused by erroneous prediction of the bounding box position
or type (shape) of an object, and these occur relatively frequently in low-quality images. The two
representative cases for the four different noise levels (100%, 25%, 12%, and 5% of the full-dose) of the
in-vivo clinical data in figure 7 show that the lower the quality, the more likely the model is to recognize the
virtual object type incorrectly or not to detect the virtual object at all. In addition, as the image quality
deteriorates, the confidence in the true positives also gradually decreases. For instance, the prediction of
bounding boxes is correct, with a high confidence score in both image cases with 100% of the full-dose
(figure 7(a)). However, as the image quality degrades to that of a quarter-dose (figure 7(b)), the confidence
scores begin to decrease. In addition, when the image quality degrades to 12% (figure 7(c)), false positive
predictions begin to happen, and this phenomenon becomes intensified in CT images corresponding to 5%
of the full-dose (figure 7(d)). When the image quality is degraded to 5%, the detector predicts false negatives,
struggling to detect the square shape.

5.2. D2IQA performance dependency on the training dataset
This study used an image library containing both full-dose and quarter-dose images to train the detector of
D2IQA. However, considering that the radiation dose in each clinical environment is different, we tested the
model with different training data sets using cases at both ends of the clinical dose spectrum (i.e. routine
full-dose only and quarter-dose only). Here, Pearson linear correlation coefficient (PLCC) and Spearman
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Table 3. Results of the detector performance of D2IQA according to contrast and size. Contrast is the mean difference between the
virtual object and the background, and size is the size of the object. The darker the color, the better the detection. In D2IQA, the larger
the size of the object and the greater the contrast, the better the detection of the object.

Contrast (%) 10 9 8

Size (pixel) 7 8 9 10 7 8 9 10 7 8 9 10

100% 0.371 0.490 0.549 0.563 0.321 0.449 0.514 0.524 0.255 0.391 0.461 0.470
50% 0.343 0.458 0.524 0.536 0.294 0.419 0.485 0.496 0.231 0.361 0.430 0.440
25% 0.198 0.330 0.408 0.419 0.150 0.280 0.360 0.370 0.101 0.217 0.298 0.315
20% 0.192 0.315 0.389 0.396 0.145 0.267 0.344 0.351 0.098 0.209 0.286 0.297
12% 0.170 0.283 0.360 0.365 0.128 0.240 0.314 0.319 0.084 0.187 0.257 0.264
7% 0.134 0.243 0.311 0.324 0.098 0.198 0.268 0.283 0.062 0.147 0.213 0.232
5% 0.112 0.206 0.268 0.276 0.082 0.164 0.226 0.236 0.052 0.118 0.176 0.190

Figure 7. Detection performance degradation in two cases. Detection accuracy degrades as the image quality degrades. Only
boxes with a confidence score of 0.3 or more are displayed to make the performance degradation noticeable. The window level
and width are set to 50 and 350.

rank-order correlation coefficient (SROCC) values were used to evaluate the prediction performance of the
model in comparison with the averaged radiologist scores of image quality. The PLCC is calculated as
follows:

PLCC=

∑
(̂s− µ̂)(s−µ)√

Σ(̂s− µ̂)2Σ(s−µ)2
(10)

where ŝ and s are the predicted image quality score and averaged radiologist score, respectively, and µ̂ and µ
are the means of the predicted scores and the radiologist scores, respectively. In addition, SROCC is
calculated as follows:

SROCC= 1− 6Σ(Ŝi − Si)
2

n(n2 − 1)
(11)

where Ŝi and Si are the values of the ith element in the sorted list of the predicted image score Ŝ and the value
of the ith element in the sorted list of the radiologist scores S. Moreover, n denotes the number of images. As
shown in figure 8, PLCC and SROCC were ranked in the order of ‘full-dose only,’ ‘full- and quarter-doses,’
and ‘quarter-dose only.’ However, all three cases still showed superior performance compared to the other
comparative NR-IQA metrics (table 4). These results indicate that our D2IQA can produce robust prediction
performance regardless of the dose level of the training dataset, and, therefore, our D2IQA can generally be
applicable to various clinical environments with different dose levels.
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Figure 8. Scatter graph showing the correlation between the scores predicted by D2IQA and those predicted by the radiologists
according to the radiation dose of the data used. rp and rs are the Pearson linear correlation coefficient and Spearman rank-order
correlation coefficient, respectively.

5.3. D2IQA performance comparison with other IQAmetrics
A statistical study was also conducted to verify D2IQA’s performance in comparison with other
representative FR- and NR-IQA methods, including root mean square error (RMSE), PSNR, SSIM,
multi-scale (MS)-SSIM [40], gradient magnitude similarity deviation (GMSD) [41], feature similarity index
(FSIM) [42], noise quality measure (NQM) [43], visual information fidelity (VIF) [44], NIQE [17],
BRISQUE [19], PIQE [20], and non-pre-whitening with eye filter (NPWE) [45]. The model observer NPWE
with anthropomorphic channels was considered for the comparison with IQA in the medical domain.

IQA scores predicted by each metric are compared with the mean score estimated by three radiologists, as
shown in figure 9, and the PLCC and SROCC values calculated for each metric are summarized in table 4.
A nonlinear least squares regression model, as described in equation (12) [3], was used to visualize
correlation trends.

Quality(x) = β1

{
1

2
− 1

1+ exp[β2(x−β3)]

}
+β4x+β5, (12)

x is the original IQA score, and β are the regression model parameters. Some IQA metrics, such as RMSE,
GMSD, NIQE, BRISQUE, and PIQE, are negatively correlated with radiologists’ scores. Thus, the x-axis of
their corresponding graphs is inverted to facilitate easy comparison with other positively correlated metrics.

From the regression trends shown in figure 9, we observed that FR-IQA methods showed a relatively
superior correlation with the radiologists’ scores compared to NR-IQA methods. Moreover, some NR-IQA
metrics (PIQE and NPWE) failed to show positive correlation patterns with the radiologists’ scores. Also, in
general, the individual data points of NR-IQA metrics, except for D2IQA, are scattered far apart from the
regression graph compared to those of FR-IQA metrics. Individual data points of D2IQA are located close to
the regression graph, and the regression graph shows a monotonically increasing pattern similar to that of
FR-IQA metrics.

We also quantitatively analyzed the correlation coefficient values as summarized in table 4. FR-IQA
metrics all exceed 0.9 in both PLCC and SROCC, but NR-IQA metrics show poor performance, with much
lower PLCC and SROCC values compared to FR-IQA metrics. Even PIQE, which shows the highest
correlation among the existing NR-IQA metrics, has considerably lower PLCC and SROCC values than all
FR-IQA metrics. However, even though our D2IQA is NR-IQA, it shows high correlation values (0.9132 for
PLCC and 0.9058 for SROCC) that are marginally better than other NR-IQA metrics and are even
comparable with those of existing FR-IQA metrics.

Figure 10 shows the scores of representative IQA metrics versus the radiation dose level of the clinical
image. SSIM and NIQE have the highest PLCC and SROCC and are chosen as representative metrics for FR-
and NR-IQA metrics, respectively. Because NIQE is negatively correlated with the radiologists’ scores, its
normalized average IQA score per dose level is subtracted from 1 to show an identical trend with other
metrics. One key finding is that, as the dose decreased, the radiologists’ scores showed a nonlinear decreasing
trend, and our D2IQA most closely mimics this trend among tested metrics.

Another interesting observation in figure 10 is that although SSIM displays the overall trend of
decreasing image quality as the dose decreases, it does not correlate well with the radiologists’ scores at some
dose levels. To be specific, radiologists and D2IQA reported that there was no significant difference in image
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Figure 9. A visualization of the correlation between radiologists’ scores and 13 metrics of FR- or NR-IQA. About 150 test images
subdivided into seven different noise levels are used. Fitting is done by performing non-linear least squares using equation (12).

Figure 10. Normalized average IQA scores from radiologists, SSIM, NIQE, and D2IQA are plotted as a function of the noise level.

quality between the 100% and 50% doses, whereas the image quality decreased sharply between the 50% and
25% doses. However, SSIM shows a monotonically decreasing trend as the dose decreases. Similarly, previous
studies reported that SSIM and PSNR did not show a strong correlation with radiologists’ opinions of
diagnostic image quality in the evaluation of magnetic resonance [46] and CT [47] images. This result
indicates that although the SSIM metric has been widely accepted in the community, it is necessary to be
careful in interpreting the results of SSIM-based diagnostic imaging evaluation. It also suggests that our
no-reference D2IQA may be a comparable or better alternative to the full-reference SSIM in the evaluation of
CT image quality.

5.4. D2IQA performance on phantom data with real noise
Table 5 shows the predicted image quality score for each metric according to the change in the noise level.
Overall, the performance patterns for each metric seen with the clinical images were similarly observed in the
phantom images. First of all, FR-IQA metrics, except for NQM and VIF, showed a pattern in which the image
quality score changed monotonically as the image quality decreased. However, among the NR-IQA metrics,
only NIQE and D2IQA successfully recapitulated the pattern observed in radiologists’ scores. Second, among
the metrics that successfully showed monotonically changing patterns, we qualitatively confirmed that
D2IQA responds most sensitively to image quality changes. To be specific, PSNR and SSIM drop evenly in all
intervals of noise level, while D2IQA drops sharply between 25% (70.72mAs) and 10% (26.52mAs) dose
levels. Considering that less than 40mAs leads to a drastic degradation in image quality [48], D2IQA’s
interpretation is reasonable. The drastic deterioration in image quality is also qualitatively recognizable
between 25% and 10% dose levels, as shown in figure 6. This result demonstrates that D2IQA is well

13



Mach. Learn.: Sci. Technol. 3 (2022) 045033 W Lee et al

Ta
bl
e
5.
Q
u
al
it
y
pr
ed
ic
ti
on

sc
or
e
by

m
et
ri
c
fo
r
ph

an
to
m

im
ag
es
w
it
h
va
ri
ou

s
n
oi
se
le
ve
ls
.M

et
ri
cs
n
eg
at
iv
el
y
co
rr
el
at
ed

w
it
h
im

ag
e
qu

al
it
y
ar
e
in
di
ca
te
d
by

(−
).
T
h
e
fi
rs
t,
se
co
n
d,
an
d
th
ir
d
h
ig
h
es
t
pr
ed
ic
ti
on

sc
or
es
fo
r
ea
ch

m
et
ri
c

ar
e
h
ig
h
lig
h
te
d
in
b
ol
d
,u
n
de
rl
in
ed
,a
n
d
do

u
bl
e
u
n
de
rl
in
ed
,r
es
p
ec
ti
ve
ly
.I
ft
h
e
pr
ed
ic
ti
on

sc
or
e
of

a
m
et
ri
c
de
cr
ea
se
s
m
on

ot
on

ic
al
ly
w
el
la
s
th
e
im

ag
e
qu

al
it
y
de
te
ri
or
at
es
,t
h
e
m
et
ri
c’
s
th
e
h
ig
h
es
t
th
re
e
sc
or
es
ap
p
ea
r
in

or
de
r
fr
om

le
ft

to
ri
gh
t.

10
0%

(2
82
.8
8)

50
%

(1
41
.4
4)

25
%

(7
0.
72
)

10
%

(2
6.
52
)

5%
(1
3.
26
)

R
ad
ia
ti
on

do
se
(m

A
s)

m
ea
n

cv
m
ea
n

cv
m
ea
n

cv
m
ea
n

cv
m
ea
n

cv

FR
R
M
SE

(−
)

0
—

0.
00
87

0.
21
14

0.
01
35

0.
17
82

0.
01
83

0.
32
19

0.
02
90

0.
31
20

P
SN

R
—

—
41
.4
34
0

0.
04
13

37
.5
38
0

0.
03
86

35
.1
96
4

0.
07
91

31
.2
00
7

0.
08
96

SS
IM

[1
4]

1
0

0.
95
41

0.
02
26

0.
91
67

0.
03
57

0.
81
52

0.
09
24

0.
68
27

0.
14
17

M
S-
SS
IM

[4
0]

1
0

0.
99
32

0.
00
37

0.
98
71

0.
00
60

0.
97
17

0.
01
60

0.
94
36

0.
02
84

G
M
SD

(−
)
[4
1]

0
—

0.
01
06

0.
51
51

0.
02
48

0.
41
64

0.
04
67

0.
52
10

0.
08
56

0.
37
79

FS
IM

[4
2]

1
0

0.
99
32

0.
00
27

0.
98
16

0.
00
65

0.
95
45

0.
02
24

0.
91
10

0.
03
77

N
Q
M

[4
3]

—
—

41
.0
43
4

0.
04
55

34
.8
59
2

0.
06
75

36
.3
52
1

0.
11
76

31
.3
42
8

0.
14
74

V
IF

[4
4]

1
0

0.
70
32

0.
09
76

0.
60
21

0.
09
43

0.
61
56

0.
14
49

0.
53
37

0.
17
25

N
R

N
IQ

E
(−

)
[1
7]

3.
95
01

0.
10
46

4.
02
18

0.
09
00

4.
28
05

0.
09
50

5.
27
63

0.
11
99

6.
12
14

0.
15
79

B
R
IS
Q
U
E
(−

)
[1
9]

38
.1
81
3

0.
15
07

32
.5
66
9

0.
16
86

30
.5
35
1

0.
14
43

36
.5
36
5

0.
10
30

41
.0
55
9

0.
05
43

P
IQ

E
(−

)
[2
0]

43
.2
87
2

0.
10
58

41
.6
12
8

0.
09
01

42
.8
50
7

0.
08
91

46
.3
14
9

0.
08
20

53
.0
21
9

0.
08
31

N
P
W
E
[4
5]

2.
29
15

0.
22
85

2.
29
27

0.
23
39

2.
29
28

0.
23
56

2.
26
67

0.
22
18

2.
24
18

0.
22
20

D
2I
Q
A

0.
69
32

0.
09
52

0.
67
17

0.
09
66

0.
62
59

0.
10
66

0.
47
91

0.
19
75

0.
30
76

0.
35
85

14



Mach. Learn.: Sci. Technol. 3 (2022) 045033 W Lee et al

Figure 11. (a)–(g) Visualization of seven different noise levels of in-vivo clinical head data. The window level and width are set to
40 and 80. (h) A box plot of scores predicted by D2IQA at seven different noise levels. The x-axis and y-axis represent the noise
level and scores predicted by D2IQA, respectively.

generalized across noise and anatomy domains (i.e. anthropomorphic phantom data with relatively uniform
background and real noise) and is accurate in quantifying CT image quality.

5.5. Generalization ability of D2IQA
In this section, we validate the generalization ability of D2IQA. The generalization ability can be divided into
two categories, which are generalization to different anatomical parts and generalization to different artifacts.
First, in order to validate the ability to generalize to other anatomical parts, an additional clinical
non-contrast head CT dataset CQ500 [49] was used to train and test a new D2IQA model. In this dataset,
811 slice images of six patients were used for training and validation, and 22 slice images of one patient were
used for testing D2IQA. Because 811 images were insufficient to train D2IQA, the train and validation
dataset was augmented fivefold by generating five virtual object-inserted images per slice image, which
resulted in 3244 training images and 811 validation images. In addition, In order to acquire various noise
levels in the test dataset, the identical noise generation pipeline in section 4.1.2 was used to generate seven
different noise levels, which resulted in 154 images in total. Because these images were CT images without
contrast and had a relatively simple background, the contrast of virtual objects was reduced to±6%,±7%
and±8%. As seen in figure 11, the scores predicted by D2IQA tend to degrade monotonically as the noise
level increases. This indicates that D2IQA can be applied to head images, which suggests the possibility of
generalization to other anatomical images.

Secondly, in practice, clinical images are usually distorted by various artifacts. Therefore, to fully address
D2IQA’s generalization ability to other distortion types, we tested its performance on additional dataset that
contained in-vivo abdominal clinical images with streak artifacts. Figure 12 shows the in-vivo clinical images
with seven different levels of streak artifacts and a box plot of scores predicted by D2IQA at each level. After
we decreased the projection stack size from 360 to 270, 225, 180, 150, 120, and 90, we obtained test images
with seven different levels of streak artifacts. The same D2IQA model that was used in section 5.3 and trained
on full- and quarter-dose abdominal images of in-vivo clinical data was used to predict the image scores. As
shown in figure 12, the image score predicted by D2IQA shows a tendency to drop monotonically as the
image quality degrades due to streak artifacts. This result suggests the generalization of D2IQA to other
distortion types and its capacity for generalization to actual clinical images.
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Figure 12. (a)–(g) Visualization of in-vivo clinical data with streak artifacts. Seven different streak levels were applied to in-vivo
clinical data. The window level and width were set to 50 and 350. (h) A box plot of scores predicted by D2IQA on seven different
streak levels. The numbers on the x-axis and y-axis represent the streak level and scores predicted by D2IQA, respectively.

6. Conclusion

By leveraging an innovative self-supervised training strategy for object detection models by detecting
virtually inserted objects of geometrically simple forms, our proposed NR-IQA metric, D2IQA, can
automatically compute the quantitative quality of CT images at varying dose levels. Rigorous evaluations of
clinical and phantom CT image datasets with different domains reveal that our metric showed superior
performance over existing NR-IQA metrics and even comparable performance to FR-IQA metrics in terms of
correlating with the perception of radiologists’. Until now, the majority of the current IQA metrics for
medical images were FR-IQA, but images without degradation are not readily available in clinical practice.
Therefore, our D2IQA would make a great contribution to optimizing image post-processing algorithms for
diagnosis or new image acquisition techniques. In future research, we plan to extend this study to design a
universal medical NR-IQA metric incorporating various image characteristics across different imaging
modalities. Lastly, to facilitate research in this field, we have built and opened a library of CT images with
their associated IQA scores provided by radiologists.
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