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Abstract
Shear viscosity, though being a fundamental property of all fluids, is computationally expensive to
calculate from equilibrium molecular dynamics simulations. Recently, machine learning (ML)
methods have been used to augment molecular simulations in many contexts, thus showing
promise to estimate viscosity too in a relatively inexpensive manner. However, ML methods face
significant challenges—such as overfitting, when the size of the data set is small, as is the case with
viscosity. In this work, we train seven ML models to predict the shear viscosity of a Lennard–Jones
fluid, with particular emphasis on addressing issues arising from a small data set. Specifically, the
issues related to model selection, performance estimation and uncertainty quantification were
investigated. First, we show that the widely used performance estimation procedure of using a
single unseen data set shows a wide variability—in estimating the errors on—small data sets. In
this context, the common practice of using cross validation (CV) to select the hyperparameters
(model selection) can be adapted to estimate the generalization error (performance estimation) as
well. We compare two simple CV procedures for their ability to do both model selection and
performance estimation, and find that k-fold CV based procedure shows a lower variance of error
estimates. Also, these CV procedures naturally lead to an ensemble of trained ML models. We
discuss the role of performance metrics in training and evaluation and propose a method to rank
the ML models based on multiple metrics. Finally, two methods for uncertainty
quantification—Gaussian process regression (GPR) and ensemble method—were used to estimate
the uncertainty on individual predictions. The uncertainty estimates from GPR were also used to
construct an applicability domain using which the ML models provided even more reliable
predictions on an independent viscosity data set generated in this work. Overall, the procedures
prescribed in this work, together, lead to robust ML models for small data sets.

1. Introduction

Shear viscosity is a fundamental transport property of all fluids [1]. Understanding its molecular
underpinnings would advance our scientific understanding of supercooled liquids [2], magma transport [3],
mixing of fluids, etc. For example, a good estimate of shear viscosity is crucial to model the Earth’s outer core
which is believed to be a liquid form of iron based alloys [4, 5]. However, in the absence of direct
measurements, its estimates from different methods differ by about fourteen orders of magnitude [6]. Hence,
a better understanding of the behavior of viscosity from simulations can help address some of these issues.
Much progress has been made in this area recently and we refer the interested readers to some excellent
works [7–11]. Further, from the point of view of applications, predicting the viscosity of industrially relevant
fluids (such as hydrocarbons and carbonates) insilico would accelerate the progress in energy storage,
petroleum, lubricants, chemical processing, pharmaceutical, and many other sectors [12, 13].
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1.1. Viscosity frommolecular dynamics simulations
Atomistic molecular dynamics (MDs) simulations with ab initio or empirical force fields can be used to
estimate the viscosity of any liquid, however complex, in silico [14–22]. While there exists many methods to
estimate viscosity from MD simulations, they largely fall into two categories—equilibrium MD (EMD)
[14, 23] and non-equilibrium MD (NEMD) based methods [24–26]. A comparison between them is beyond
the scope of this work and the readers are directed to some excellent works in this area [14, 15].

Despite the progress in this area [14, 15, 19, 23, 27–34], the state-of-the-art methods to estimate viscosity
accurately from MD simulations require huge computing time especially for viscous fluids [23, 35–37], as it
is a collective quantity. This drawback precludes the use of MD simulations in viscosity-based high
throughput screening processes in the industry [12]. Also, force field refinement strategies which use the
experimental viscosity as a benchmark require significant effort for the same reason [38]. This is especially
pertinent because many general purpose classical force fields cannot reproduce viscosity (and other transport
properties) well [35, 39–41]. Another important difficulty in estimating viscosity from MD is its sensitive
dependence on primary and ancillary simulation setup parameters. Hess showed that ancillary MD run
parameters such as the number of independent replicas, numerical precision of the MD engine, neighbor list
cutoff, and Ewald sum related parameters have a significant effect on the estimated viscosity value [15].
Hence, reporting meaningful confidence intervals of viscosity estimates is crucial and is a topic of ongoing
research [14, 15, 28, 29, 42]. To address these problems related to estimating shear viscosity from MD
simulations, we look at alternate approaches using machine learning (ML) methods.

1.2. MLmethods
Recently, ML and deep learning (DL) models have started to augment various aspects of MD simulations
[43–49]. More specifically, in the context of using ML methods to predict slowly converging properties of
liquids—of which shear viscosity is one—some initial advances have been made. Allers et al used neural
networks (NNs) and random forests (RFs) to predict the self diffusion coefficients of particles interacting via
Lennard–Jones (LJ) interaction and showed them to be performing better than empirical models [50]. They
also used ML methods to predict the finite size corrections to self diffusion coefficients in binary LJ fluids
[51]. Also, several ML models were used to predict the experimental viscosity and ionic conductivity of ionic
liquids using only molecular features [52–60]. However, to our knowledge, ML methods have not been used
to predict shear viscosity derived purely from MD simulations.

The protocols for developing and comparing ML models—especially for chemical science
applications—are not yet completely established [61]. There exist a plethora of supervised learning
algorithms [62, 63], model selection rules [64–68], performance metrics [61, 69, 70], uncertainty
quantification methods [71–75], and hyperparameter tuners [76] which are used to create ML models; yet,
there are no clear protocols on which combination should be chosen. For example, among the many
performance metrics that are used to train and compare ML models, the best choice is still a matter of debate
[61, 77, 78]. Similar conclusions hold true for model selection [68], and uncertainty quantification [79] as
well.

In this context, ‘No-Free-Lunch’ theorems by Wolpert and Mcready imply that there is no single
algorithm that has the best performance across all possible optimization problems [80]. These theorems
when applied to ML indicate that any single ML algorithm cannot be expected to perform well across all
possible ML tasks. Though there is still a debate on the applicability of these theorems to practical ML
problems, it is considered common knowledge that the ML algorithm should be tailored to the specific task
at hand [63]. Exploiting the idiosyncrasies of the data set can lead to significant improvements in the
performance of ML models. For example, Hansen et al were able to improve the performance (mean absolute
error (MAE)) of ML models used to predict atomization energies from 10 kcalmol−1 to 3 kcalmol−1 (70%
improvement) by exploring a number of ML techniques and molecular representations [81]. In this work, we
use this approach to develop ML models tailored to viscosity data set generated from EMD simulations.

1.3. MLmodels for small data
As it is computationally costly to get reliable (including standard errors) estimates of viscosity from atomistic
MD, generating large data sets (like GDB-17 etc with nearly 150 billion data points [82, 83]) is practically
infeasible with the current computing resources. The largest MD-derived viscosity data set (with 1061 data
points) we could find was the work of Jamali et al in which the MD computed viscosity was used to predict
the box size corrections to diffusion coefficients of particles in binary LJ systems [84]. Such small data sets
pose unique challenges to the ML methods [85]—(a) they are hard to generalize, (b) they are susceptible to
overfitting, and (c) they tend to underestimate the generalization error [65, 86]. For example, NNs which
generally outperform other ML models, struggle in the low data regime [81, 87, 88]. Also, Vabalas et al, on
surveying over 50 articles on ML for autism, have shown that ML models tended to produce overoptimistic

2



Mach. Learn.: Sci. Technol. 3 (2022) 045032 N V S Avula et al

results when the sample sizes are small [89]. All these issues exacerbate the reproducibility of the results
which is already a fast growing challenge in all fields using ML methods [90–92].

In this work, we train seven ML models to predict the shear viscosity of binary LJ fluids, with particular
emphasis on addressing issues arising from a small data set. Specifically, the issues related to model selection,
performance estimation, performance metrics, uncertainty quantification and applicability domain (AD)
were investigated. First, we show that the common practice of estimating the performance of the ML models
on a single unseen data set shows wide variability for small data sets. The consequences of using individual
unseen data set on the hyperparameter optimization landscape are demonstrated. Then, we compare two
simple CV procedures for their ability to do both the model selection and performance estimation together.
We discuss the role of performance metrics in selecting and evaluating ML models. We discuss some general
principles for comparing different metrics and use them to choose a suitable set of metrics relevant to the
viscosity data set. We propose a holistic ranking method based on multiple metrics to choose the best
performing ML algorithms. To complement the traditional ML models, we train a probabilistic model to
capture the inherent uncertainty in the data set and compare its performance with that of other models. The
performance of the ML models developed here is shown to be better than empirical models for viscosity.
Finally, the AD of ML models is also constructed (and tested) to assist the decision making of the end user.
We believe that the techniques adopted herein to train the ML models, combined with the uncertainty
quantification and AD can lead to accurate, reliable and reproducibleMLmodels to predict shear viscosity of
binary LJ mixtures and can help researchers to develop ML models for small data sets in general. Also, we
hope that the detailed descriptions and the codes attached in the supporting information would help with
the reproducibility of the results presented in this work.

The paper is organized as follows: the next section describes the background theory and empirical
evidence that aids in the discussion on model selection and performance metrics. It is followed by sections
on computational details and results. The final section presents our conclusions and suggestions for
developing ML models for small data sets.

2. Background

2.1. The structure of the problem
We assume that there exists a joint probability density p(x,y) that generated the data set [62, 63]. Here, x is a
vector of input features and y is the target variable, also called as the label. In the context of shear viscosity
prediction, the feature vector can be constructed from quantities like x1, σ2, ϵ2, k12, ζ , ρ∗ and the target
variable is the shear viscosity η (see section 3.1). We focus on the regression task which aims to determine a
function f ∗(x) that is an optimal representation of the data set. The sense in which the function f ∗(x) is
optimal is often taken to be the one that minimizes the expected loss (also called as risk) E[L] (equation (1)).
Most common ML models like kernel ridge regression (KRR), support vector regression (SVR), NN, etc fall
under this category.

f ∗(x) = argmin
f(x)

E[L] = argmin
f(x)

¨
L(y, f(x))p(x,y)dxdy (1)

where L(y, f(x)) is the user-defined loss function. The choice of the loss function has a direct relation to the
kind of function f ∗(x) obtained [77]. The most common loss function, the squared loss, where
L(y, f(x)) = (y− f(x))2 yields the conditional mean Ey[y|x] (equation (S2)) as the f(x) [62]. Discussion on
other loss functions and the consequent effect on the properties of f ∗(x) is presented in section S1.3.

However, to compute the expected loss/risk, the underlying joint probability density p(x,y) has to be
known which is hard to do in practice. Hence, the expected loss is approximated by the empirical loss, Eemp[L]

f ∗(x) = argmin
f(x)

Eemp[L] = argmin
f(x)

(
1

N

N∑
i=1

L(ytruei , f(xi))

)
(2)

where, N is the number of data points, ytruei are the target values corresponding to the feature vector xi.
Generally, the empirical loss tends to be much lesser on the data set used to infer f ∗(x) (called the training
set) than on new/unseen data set(s). This is because the minimization of empirical loss (per se) incentivizes
the learning machine to learn the peculiarities (like noise) of the particular training data sample rather than
the trends in the underlying model that generated that data set [62, 63, 93]. Hence, the goal of the learning
protocol should be to minimize the error on new/unseen data set(s) called the generalization error. This
phenomena of ML methods having significantly lesser training error than the generalization error is called
overfitting and is especially relevant for models on small data sets [62, 63, 93].
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The most common way to alleviate the problem of overfitting is to reduce the complexity/capacity of the
learning machine, thereby reducing its ability to learn the noise associated with the training data sample.
However, the complexity should not be reduced to such an extent that the general trends in the data are lost,
resulting in underfitting. Hence, the ML model should choose an optimal complexity corresponding to the
general trends in the data. A popular method to control the complexity of the models is called regularization
in which a penalty term (called the regularizer, equation (3)) which penalizes complex models is added to the
empirical loss [63, 93]. The common forms of the regularizer are based on the norm of the weights (w) of the
model like—L2 norm (called as ridge regression or Tikhonov regularization), L1 norm (for example in least
absolute shrinkage and selection operator (LASSO) model), or a combination of both [63]. We also note that
there are many other regularization techniques that are specific to DL methods such as—early stopping,
dropout, soft weight sharing, etc [94].

f ∗(x) = argmin
f(x)

J= argmin
f(x)

 1

N

N∑
i=1

L(ytruei , f(xi))+
∑
j

λjΩj( f)

 . (3)

Where Ωj( f) are the regularizers and λj are the parameters that control the amount of regularization. Now
that the ML models have a mechanism to control the complexity through regularization, the natural next
step would be to choose the values of regularization parameters. This task falls under the purview of model
selection [63]. In the following section, we discuss various model selection criteria and a closely related topic
of performance evaluation.

2.2. Model selection and performance evaluation
It is a common practice to distinguish the parameters of ML and DL models into model parameters and
hyperparameters [62, 63]. The model parameters are learnt during the training phase on the training data.
Examples of model parameters include—slope and intercept in linear regression, coefficients of kernel
expansion in kernel methods (like KRR), weights of neurons in NNs, etc. The hyperparameters are generally
the high level settings of ML algorithms which are either set by the user or inferred during the model
selection procedure. Examples of hyperparameters include—regularization parameters, the degree of
polynomial in polynomial regression, choice of the kernel in kernel methods, choice of activation function in
NNs, number of neurons in NNs, etc.

The task of selecting the model with the optimal complexity is reduced to the estimation of values of
hyperparameters; the criteria used for such selection are called model selection criteria. As stated earlier, the
goal of ML models is to minimize the generalization error which is the average error over all unseen data.
However, generalization error cannot be obtained in most practical situations and hence estimators on finite
data sets are constructed to approximate it. The process of estimating the generalization error by using
estimators on finite data sets is called performance evaluation and is a prerequisite for model selection. It is
crucial to note that the error estimates are obtained over finite data sets and hence depend on the size of the
data set, especially for small data sets. A simple example of such an estimator is the split sample estimator
where the whole data set is split into two parts (generally unequal) and the error is computed on the split that
was not used for training [65]. Split sample estimator is known to be unbiased i.e. the average split sample
error over multiple independent realizations of unseen data asymptotically converges to the generalization
error. Hence, minimizing the split sample error can in principle reduce the generalization error. However, it
was recently shown that the unbiasedness per se is not as important as the variance of the estimator when it is
used for model selection [65]. When an estimator has high variance (occurs with small data sets [65]) the
value of the estimated error on any one particular unseen data sample can be very different from the
generalization error; hence the hyperparameters that minimize the estimated error can be far off from the
optimal ones. Cawley and Talbot showed (on a synthetic data set) that hyperparameters selected based on
split sample estimators can severely overfit or underfit the data [65]. In practice, the users rarely have the
capability of generating multiple independent realizations of the data and hence the variance of the estimator
plays a major role. Therefore, for small data sets it is not considered a good practice to estimate the error on a
single realization of the data set [65]. In order to mitigate this problem, various cross-validation (CV)
schemes are generally used.

The core idea of k-fold CV is to split the entire data set into k equal disjoint sets, train the ML models on
k-1 sets and estimate the error on the remaining one set. This process is repeated k times, each time with a
different hold-out set [62, 63]. The average error over k-folds is used as the estimate for the generalization
error. It is a common practice to use 5- or 10-folds during CV [63].

The error estimates from k-fold CV are often used for model selection by searching over the space of
hyperparameters and choosing the one that yields minimum CV error. But once the k-fold CV error is used
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to optimize the hyperparameters, it is no longer unbiased [63, 95, 96]. Typically another unseen data set
(called the test set) is used to estimate the generalization error of the models with optimized
hyperparameters [63]. Using a single realization of the test set, however, suffers from the high variance issue
discussed above. Nested CV or double CV improves upon k-fold CV by doing performance evaluation and
model selection in two nested loops [65, 81, 89, 95, 96]. The outer loop is used to estimate the generalization
error and the inner loop is used to select the hyperparameters. Also, we note that there are many methods of
splitting the data set into train/validation/test sets such as—Monte-Carlo CV, bootstrapping, Kennard–Stone
splitting, and combinations thereof [68, 97]. Xu and Goodacre compared the performance (in terms of their
ability to predict the generalization error) of various data splitting methods including k-fold CV,
Monte-Carlo CV, bootstrapping, etc and found that a single best method could not be found a priori and
suggest that the choice of the method should be tuned to the kind of data (No Free Lunch again) [68].

Finally, we note that model selection and performance evaluation are big and unsolved challenges on
small data sets [63, 65, 86, 95–98]. Guyon et al organized a performance prediction challenge in which the
participants (more than 100) were asked to predict the generalization error on finite data sets of real world
importance like medical diagnosis, speech recognition, text categorization, etc [97]. They observed that most
submissions were overconfident about their ML models i.e. their prediction of generalization error is less
than the true generalization error. They also noted that the performance of the ML models truly improved in
the first 45 days of the 180 day challenge after which overfitting set in. It is now a common belief that when a
data set is worked upon repeatedly, even careful performance prediction protocols can result in optimistic
performance predictions over time [63].

2.3. Performance metrics for regression
In this section, we summarize some of the principles that can be used to choose a relevant metric to the
particular ML task at hand and also consider the particular case of viscosity data set. Performance metrics are
generally used in two critical areas of ML model development workflow—model training and model
comparison. Though the choice of the metric can significantly alter the kind of ML model developed and
consequently its real-world performance, there is no clear consensus on this topic [61, 69, 77]. As is the case
with model selection criterion, there is no single best metric for model training that can be used across all ML
tasks [69]. Further discussion on this topic can be found in section S1.3.

Another area in which loss functions are used in ML workflow is model comparison, in which models are
ranked based on their generalization performance. Ideally, the generalization performance of ML models
should also be measured using the same metric used in their training phase [77]. For example, an ML model
trained by minimizing mean squared error (MSE) should be compared to other models using MSE
generalization error. However, in many cases, the choice of the loss functions cannot be controlled by the
model developers and hence it is difficult to choose just one metric to compare such models. For example,
Makridakis et al use a weighted average of symmetric mean absolute percentage error (sMAPE) and mean
absolute scaled error (MASE) to compare the models in the M4 forecasting competition citing a lack of
agreement on the advantages and drawbacks of various metrics [78]. Hence, it is generally recommended to
report the estimates of generalization error using multiple metrics [61, 69, 81, 88]. Also, given the
proliferation of various metrics, it is important to choose the set of metrics that are relevant to the ML task at
hand and preferably containing complementary information to each other. Armstrong and Callopy
compared six commonly used metrics and ranked them qualitatively (good, fair, poor) according to five
characteristics—reliability, construct validity, sensitivity, outlier protection, and their relationship to decision
making [69]. They conclude that there is no single metric for model comparison that can be considered the
best in all situations and that they should be selected based on the kind of data set.

We use some of the arguments presented in their work to identify metrics suitable to the viscosity data set.
See section 3.1 for a discussion about the characteristics of the viscosity data set used in this study. First, we
look at the compatibility of metrics to a data set that spans many orders of magnitude. All metrics that have
units i.e. are not scaled, tend to be dominated by the error from the highest order of magnitude and hence do
not give information about the contributions of the errors from low orders of magnitude [69]. Metrics based
on scaled error like mean absolute percentage error (MAPE) are more suited to such a situation. Next, we
look at the level of outlier protection of various metrics. All metrics that take an average of individual errors
suffer from outlier problem because the mean itself is sensitive to large outliers. Median based metrics like
MedAE are better suited to such a situation. However median based metrics are not sensitive to small changes
in the errors and also do not have clearly defined gradients with respect to model parameters. Finally, we look
at metrics that can capture systematic biases (over or underestimation) in the ML models. Metrics based on
error function with strictly positive range like squared error (SE), absolute error (AE), absolute percentage
error (APE), etc cannot distinguish between systematic over or under prediction by the ML models. Metrics
based on mean error (ME) or mean percentage error (MPE) can be used to gauge the bias in the models.
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Therefore, we rank the ML models developed in this work based on the following metrics—MSE, MAE,
MAPE, MedSE, MedAE, MedAPE, ME, MPE, MedE, MedPE, and R2 (coefficient of determination).

3. Computational methods

3.1. Data
Viscosity is one of the few properties that can span many orders of magnitude (>10), depending on the
complexity of the system and the thermodynamic conditions. In this work, we restrict ourselves to studying
systems with simple interaction parameters (LJ only). This has the twin advantage that the liquid part of the
phase diagram is well understood and also being a simple fluid, the viscosity computation is relatively easy.
However, even for such simple systems, a consistent data set with a large number (several thousand) of
systems is not yet available in the literature. In the absence of a coherent data set, smaller data from multiple
sources is generally collated to build a larger data set [50, 99]. However, due to the sensitivity of viscosity
(especially the confidence interval) to the ancillary MD parameters, this procedure can result in unreliable
models.

3.1.1. Vlugt data set
Recently, Vlugt and co-workers simulated 250 binary LJ fluids to study the system size dependence of the
self-diffusion coefficients [84]. In order to test the analytical expression for the system size corrections to the
self-diffusion coefficients, they also computed the viscosity using the Einstein–Helfand equation
[14, 100, 101]. We found that their work reported the largest consistent data set that used multiple long
independent runs to compute viscosity and crucially, its confidence interval. In view of these attributes, our
ML models were built using this data set. Here we note that there exists a significant amount of viscosity data
of pure LJ systems [99, 102–108], and some sparse data of binary LJ systems [109–111] from other works.
This collated data can, in principle, be used as a training, testing or constraining set in conjunction with the
Vlugt data set. However, we do not use such a collated data in the current work, as it is not entirely clear how
viscosity data sets from different sources with different MD run time parameters (potential cut off, system
size, time step, numerical accuracy, trajectory length, etc) can be handled.

The data set contains a total of 1061 points, all of them at the same temperature and pressure of 0.65 and
0.05, respectively. All the quantities are reported in dimensionless units with interaction parameters of the
first component as the base units i.e. σ1 = 1, ϵ1 = 1, mass1 = 1. The state space is spanned by varying three
interaction parameters (σ2, ϵ2, k12) and one compositional parameter (X1). We call these parameters as
‘preMD’ features to be consistent with ML nomenclature where the independent variables are called as
features. Further, each state point was studied at four different system sizes (quantified in terms of the total
number of particles in the simulation box). In sum, about 250 state points were simulated, each at four
different system sizes, giving a total of about 1000 data points. Unlike the self diffusion coefficient, shear
viscosity does not have a strong dependence on system size [17, 20, 21, 42, 112–115]. Hence, we use only the
data points at the system size of 2000 particles (273 out of 1000 data points) to develop the ML models in this
work.

In the raw data, viscosity values span four decades, from 10−1 to 103, but only two data points had a
value greater than 20. These two data points (ηtrue > 20) were identified as outliers and were not considered
during the ML modeling. Figure 1 shows the distribution of data points by their viscosity values indicating
that most of the data points are populated around the mean viscosity value of around 3 and the extremal
decades are sparsely populated. Due to the uneven distribution of viscosity values across decades, the models
trained subsequently can be biased towards values around the mean. The distribution of the standard error
relative to the corresponding mean is shown in figure S2. The relative standard error seems to be
uncorrelated to the viscosity value itself indicating that the data across decades is of similar quality. The
standard error on the mean was used to calculate the irreducible minimum value of various loss functions
[62] (also called as the Bayes error [63]). The irreducible errors are incurred by all non-probabilistic ML
models because of their approximation of the conditional density Ey[y|x] by point estimates [62]. The
irreducible MSE is the average variance in the data. The irreducible MAE and MAPE were estimated by
sampling from a Gaussian conditional density [62]. We also note that, in general, metric value obtained from
the average standard error would be different from the irreducible loss. For example, the MAPE value
obtained from the average standard error(%) of the data is about 2%, whereas the irreducible MAPE is 0.8%.
Unless explicitly mentioned, the metric values obtained from the average standard errors are used to
compare the corresponding metrics from the ML models. Hence, we consider ML models with MAPE metric
lower than 2% to be successful models.
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Figure 1. Data distribution: the distribution of the viscosity (ηtrue) from the Vlugt data set [84] across decades of viscosity. The
blue vertical dashed line represents the median and the two blue vertical dash-dot lines represent the 95 percentile range around
the median. The black dotted line represents the mean of the data.

Furthermore, to get a preliminary understanding about the underlying correlations in the data, viscosity
is plotted against other features—X1, σ2, ϵ2, k12, box length, packing fraction (ζ), and self-diffusion
coefficients (D1 and D2). These features can be divided into two sets—preMD and postMD features. As their
names suggest, the preMD feature set consists of all those features that are fixed before running the MD
simulation and postMD features are obtained only after the MD simulations. In this case, there are four
preMD features—X1, σ2, ϵ2, k12 and six postMD features—number density, ζ and the four preMD features.
As expected, self-diffusion coefficients are inversely correlated to viscosity, consistent with the
Stokes–Einstein relation. Apart from self-diffusion constant, only the packing fraction seems to be well
correlated with viscosity, with higher packing fractions corresponding to higher viscosity. Rest of the plots
show a wide spread of viscosity values at any given feature value indicating that no single feature can predict
viscosity accurately. See section S3.1 for more details.

Two different sets of models, using postMD and preMD features, respectively, were developed for each
ML algorithm. Unless otherwise mentioned, the results presented are from the models developed using
postMD features. All the features were scaled using Min-Max scaler before training the ML models. Also, the
logarithm of viscosity was used as the label. However, all the metrics presented in the subsequent sections
were computed on the untransformed viscosity values.

The choice of the data transformations was made before the development of the ML models by using
Exploratory Data Analysis techniques [116, 117]. The central idea is to transform the raw data to a
distribution with known statistical properties (like normal distribution) [118]. Briefly, the label (shear
viscosity) was transformed using a log-transform. This serves two purposes—(a) the transformed label is
closer to a normal distribution (see figures 1 and S1) and (b) it enforces the non-negativity (of viscosity)
constraint on the ML models. As the features were already sampled (by Vlugt et al) from a regular grid, only
Min-Max scaling was applied to bring them into the interval [0,1].

3.1.2. Interpolation data set
In order to test the predictive performance of the ML models away from the Vlugt data grid, a
complementary data set called the interpolation data set was created. As the name suggests, the data set is
created in the interpolation region of the preMD feature space of the Vlugt data set. The interpolation set
consists of a total of 17 points at several interpolation distances. We note that the interpolation space is not
entirely in the equilibrium liquid region of the binary LJ phase diagram at the thermodynamic conditions
studied by Jamali et al [84]. Hence, it is difficult to generate a ‘representative sample’ of the interpolation
space, which is required to obtain quantitative estimates of predictive performance. In this context, the
current data set of 17 points (though small) can be used to understand the predictive performance in a
qualitative sense. Details of the MD simulation procedure used to create the interpolation data set are given
in the supporting information.

3.1.3. Applicability domain (AD)
Given that the interpolation space is not entirely in the liquid region, the ML models cannot be expected to
perform well over the entire interpolation space, especially far away from the Vlugt data grid. One way to
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Figure 2.Model selection and performance estimation: a schematic representation of the two model selection procedures used in
this study—shuffle split cross validation (SS-CV) and k-fold split cross validation (KFS-CV). L1, L2 represent the
hyperparameters to be tuned in the model selection procedure. Fi, Vi, Ti represent the train, validation and test sets, respectively.
See section S5.1 for more details.

tackle this issue is to define an AD within which the ML models are expected to perform well [119–123].
There are many methods to construct an AD and a detailed comparison is beyond the scope of this work
[121–123]. The AD used in this work is described in section 4.3. The interpolation data set is divided into
two parts called In-AD and Out-AD based on whether the points fall within or outside the AD, respectively.

3.2. MLmodels
A total of seven ML models were tested for their ability to predict shear viscosity—KRR, artificial NN
(ANN), Gaussian process regression (GPR), SVR, RF, k-nearest neighbors (KNNs), and LASSO. In the
current work, GPR is the probabilistic model (level 2 in section S1.1) and all others are non-probabilistic in
nature (level 2 in section S1.1). Except ANN, all other the ML models used in this work were from the
scikit-learn implementation [124]. The ANN models were built using the keras (part of tensorflow
(v2.7.0)[125]) library in a python environment [126]. Many helper functions from numpy [127], scipy
[128], pandas [129] and scikit-learn [124] were also used in the model construction, model selection and
performance estimation steps.

3.3. Model selection and performance estimation
In this work, we compare two popular model selection and performance estimation methods called—shuffle
split CV (SS-CV) and k-fold split CV (KFS-CV). A precise algorithmic description of these methods is given
in section S4.1. Briefly, SS-CV splits the data set into three parts (named train/validation (val)/test) multiple
times. Each time the data is shuffled and hence independent random realizations of the data can be obtained
by SS-CV. KFS-CV is a two step procedure in which firstly entire data is split into two parts (named
train/test) and later the train part is again split into k-folds of roughly same size. The k-folds (obtained in the
second step) are used to obtain validation score and the test sets are used to do performance evaluation.
Figure 2 summarizes the two procedures. Finally, we note that the procedures outlined above are referred to
by slightly different names in the literature [52, 62, 65, 68] and the ML software packages [124]. Hence we
recommend using the algorithmic description of these methods given in section S4.1.

3.4. Interpolation grid
The interpolation capabilities of the models can be qualitatively tested by plotting the predicted viscosity
values at the grid of interpolated feature values. As the feature space is generally high dimensional (four in
this case), only projections onto 1D/2D sub-spaces can be visualized. To keep the visualization uniform
across the features, interpolation was done in the scaled feature space i.e. after the min-max scaler is applied.
The Vlugt data set was generated at discrete values of each feature—X1: (0.1, 0.3, 0.5, 0.7, 0.9), σ2: (1.0, 1.2,
1.4, 1.6), ϵ2: (1.0, 0.8, 0.6, 0.5), k12: (0.05, 0.0,−0.3,−0.6). However, the final data set consists of only 250
unique combinations of preMD features as opposed to 320, had all the combinations been studied.

We have constructed four different interpolation grids to test the interpolation capability across each
feature individually. The interpolation grid for a particular feature is generated at values uniformly spaced in
the range of 0–1 while holding all other features at the values from the Vlugt data set. For example, in order
to generate the X1 interpolation grid, 19 uniformly distributed values between 0–1 were used for X1, while
the values for σ2, ϵ2 and k12 were taken from their scaled values in the Vlugt data set. We also define the
interpolation distance of any interpolated point as its Euclidean distance from the nearest training data point.
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4. Results and discussion

In this section, we first present evidence related to aspects of model selection and performance evaluation
that are pertinent to ML models at the low data regime. We then compare different ML models based on
their performance metrics and interpolation behavior. We finally compare the predicted uncertainties of
ensemble models and that of a probabilistic ML model (GPR).

4.1. Model selection and performance estimation
4.1.1. Understanding the hyperparameter optimization landscapes
In order to understand the optimization landscape of the hyperparameters, we use LASSO and KRR models.
They were chosen because they have less than three hyperparameters and are hence conducive for the
visualization of the optimization landscape in 2D plots. Moreover, both models have analytic solutions and
are hence much faster when trained on small data sets. Both these models were also studied in the context of
model selection (albeit on synthetic data sets) and hence allow a close comparison wherever possible [65].

In this section, we elucidate the dependence of the performance of these ML models on the particulars of
the data splitting procedure, which is an essential step for model selection and performance evaluation. The
entire data set is randomly split into three parts—train, validation (val) and test sets with 60/20/20 ratio. This
procedure is repeated Nsplit times thereby creating multiple random realizations of the train, validation and
test splits. These Nsplit train sets are used to train Nsplit MLmodels at each hyperparameter value. The trained
models are then evaluated on their corresponding validation and test sets.

Figure 3(a) shows the average test MSE of the LASSO model across a wide hyperparameter (α) range.
Clearly, α values less than 10−3 are suited for the viscosity data set. However, no single optimal
hyperparameter can be selected as there is no discernible change in the MSE values for α less than 10−3.
A similar ‘flat-minima’ hyperparameter landscape was also observed by Beckner et al on an ionic liquid
experimental viscosity data set [52]. Hence, strictly applying the common model selection criteria of
selecting the hyperparameter with the best performance on the validation set (in this case, minimizing MSE)
belies the flat-minima nature of hyperparameter landscape. Also, the wide confidence interval around the
average test MSE indicates that there is significant variability in the performance (MSE) of the ML models
across different data splits.

Interestingly, the wide scatter of points in figure 3(b) indicates that the individual test MSEs are not
correlated to individual validation MSEs. Hence model selection criteria based on optimization of the
performance of individual validation sets need not necessarily result in a good generalization performance.
However, the average validation MSE (over Nsplit splits) is perfectly correlated to the average test MSE as
shown in figure 3(c). Consequently, the data splitting procedures that reserve a single ‘unseen’ data set (often
called as test set [56, 88]) for evaluating the generalization performance should be discouraged as they suffer
from wide variability. We note that this problem is unique to small data sets and the variability decreases
rapidly with increase in data set size [65].

The same procedure was applied to the KRR model to elucidate its hyperparameter optimization
landscape. In addition to validation and test sets, the performance of the KRR models was also evaluated on a
single Interpolation set containing 17 data points. Figure 4 shows the 2D contour plots of the average
validation, test and interpolation MSE over a wide range of KRR hyperparameters α and γ. The landscapes
of the average test and validation MSE are similar, consistent with the LASSO results (figure 4). The
interpolation MSE landscape is slightly different from others near the minima while still retaining the overall
features. Importantly, it is more rugged than the validation and test MSE landscapes, possibly because the
same Interpolation set was used across all the Nsplit splits.

The wide scatter of points in figures 4(a)–(c) show the optimal hyperparameter selected by minimizing
the individual validation, test and Interpolation MSE, respectively. This demonstrates that using a single
realization of data split to model selection or performance evaluation can result in wide variability, again
consistent with LASSO results. Cawley and Talbot used KRR on a small synthetic data set to demonstrate this
issue of wide variability when single realizations of data are used [65]. Further, while the average MSE
landscapes are smooth, those corresponding to individual realizations of the data splits are rugged as shown
in figure 5. The validation and test landscapes of these individual splits also show significant differences. For
example, figures 5(c) and (d) corresponds to validation and test landscapes of a randomly chosen realization
and their optimal hyperparameters vary by more than seven orders of magnitude.

These results demonstrate that there is a wide variability in choosing the optimal hyperparameter values
(model selection) and also in estimating the generalization performance (performance evaluation) of the ML
models on small data sets. Hence, it is crucial to do both the model selection and performance evaluation
tasks by training an ensemble of models on different random splits of the data set.
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Figure 3.Model selection: (a) average validation MSE plotted against the α hyperparameter of the LASSO model. The red dotted
lines show the 95% confidence interval of the validation MSE. (b) A scatter plot of the individual test MSE and validation MSE at
α= 5× 10−6. The black square shows the test MSE vs validation MSE averaged over the 5000 splits. The error bars correspond
to the 95 percentile about the median of the respective MSE. The green and the blue ellipses are marked to indicate the data splits
in which test MSE can be much greater or lower than validation MSE, respectively. (c) Average test vs Average validation MSE at
different values of the α hyperparameter of the LASSO model. The test and validation MSE were obtained using LASSO model
and shuffle-split data sampling scheme (see section 3).

Figure 4.Model selection: 2D contour plots of (a) average validation MSE, (b) average test MSE and (c) average interpolation
MSE of KRR model. The minima in the 2D contour plots are marked as follows—black-unfilled-circle: average validation MSE,
black-unfilled-square: average test MSE, green-filled-star: average interpolation MSE. The blue triangles in (a) and (b) mark the
optimal hyperparameters that minimize individual validation and test MSE, respectively. The pink triangles in (c) mark the
optimal hyperparameters that minimize individual interpolation MSE. The validation, test, and interpolation MSE were obtained
using KRR model and shuffle-split data sampling scheme (see section 3).

4.1.2. Comparison of CV procedures
The model selection criterion is based on the average validation score obtained from the CV procedures. We
observe that the average validation score landscapes are almost identical in both SS-CV and KFS-CV
irrespective of the kind of metric used to construct the landscape (figure S8). However, the two procedures
differ in the variance of the validation landscape, with KFS-CV yielding a lower variance than SS-CV
(figure S9). Cawley and Talbot show that the estimators with lower variance can do a better job of selecting
the optimal hyperparameters [65]. Hence we use KFS-CV to do model selection and performance evaluation
on rest of the ML models—SVR, RF, KNN, ANN.

Also, in both the CV procedures, the variance of the validation landscapes was strongly dependent on the
error metric used to construct the landscapes. In general, we observe that MSE shows the highest variance
followed by MAE, MAPE and R2. The variance in MSE validation landscape is often so high (>100%), that
unambiguous selection of optimal hyperparameters is difficult. Hence, the use of other metrics that have
lesser variance such as MAE, MAPE, R2 can help rectify the issue. In this work, we use the MAE validation
landscape to choose the optimal hyperparameter values. Tables in section S5.1.2 list the optimal
hyperparameters and the corresponding values of metrics for all the ML models studied in this work.

Finally, the performance estimation is done by evaluating the trained models (with the optimal
hyperparameters) on the test sets. As both CV procedures result in nearly identical performance scores, we
use the KFS-CV method to do the performance estimation for the other ML models—SVR, RF, KNN, ANN.
In the following section, we compare the performance of various ML methods and rank them using multiple
metrics.
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Figure 5.Model selection: (a) and (b) show 2D contour plots of the individual validation and test MSE, respectively, of a
randomly chosen realization (called split 1) of the train-val-test split. (c) and (d) show the same for another random realization
(called split 2) of the train-val-test split. In all panels, the minima of the average MSE are marked as follows: black-unfilled-circle:
average validation MSE, black-unfilled-square: average test MSE. The minima of these particular realizations are marked with a
white triangle symbol. The blue dashed arrow in (a) is drawn as a guide to the eye to highlight the large difference between the
individual (white triangle) and the average (black circle) minima. The blue dashed ellipse in (c) is drawn as a guide to the eye to
indicate that the individual and the average minima can be close by chance. The validation and test were obtained using KRR
model and shuffle-split data sampling scheme (see section 3).

4.2. Model comparison and ranking
The predicted viscosity values from all the models, except KNN and LASSO, agree well with the true viscosity
values both for test and interpolation data sets as shown in figure 6. The agreement is seen to be good across
decades of viscosity values indicating, at least to the naked eye (figure 6(a)), that models do not bias any
particular decade of viscosity values. A detailed discussion on the model bias is presented in the supporting
information (section S5.2). Figure 6(c) compares the MAE and MAPE of all the models evaluated using the
KFS-CV performance estimation procedure (section 3.3). The MAPE of KRR, GPR, ANN and SVR models
are below the average standard error (%) of the data (called as threshold henceforth) and hence can be
considered as successful models. On the other hand, KNN and LASSO models have both their test and train
MAPE much above the threshold and can hence be considered as unsuccessful models. While the RF model
performs well, it is still considered unsuccessful, due to its peculiar interpolation behavior (see section 4).
Also, the successful models outperform the empirical model developed by Bell et al and Lautenschlaeger and
Hasse for pure LJ fluids (see section S4.2) [99, 108].

The MAE and MAPE of the successful models—i.e. KRR, GPR, ANN, and SVR—are very close to each
other as seen in figure 6(c) and hence more information is required to unambiguously rank them. In figure 7,
we show the relative ranks of all the models based on seven (MAE, MSE, MAPE, MedAE, MedSE, MedAPE
and R2) performance based metrics and four (ME, MPE, MedE, MedPE) bias based metrics. The mean,
median values of the AE, SE, and the APE along with the coefficient of determination (R2) are the
performance metrics, while mean, median error (E) and the percentage error (PE) constitute the bias
metrics. An average rank (averaging done across the metrics with uniform weights) is also shown for each
model. The average rank follows closely the MAE rank with four successful models—KRR, GPR, SVR, and
ANN—having an average rank less than four and three unsuccessful models having a rank greater than four.
According to the average rank, GPR is the best performing model, followed closely by SVR and KRR. These
three models are followed by ANN, RF, KNN, and LASSO, respectively, with the last two consistently ranked
sixth and seventh. Interestingly, there is considerable mixing of ranks based on MAE vs MSE, indicating that
a holistic approach using a combination of metrics needs to be used to objectively evaluate the models.
Another noticeable trend is the disconnect between the ranking based on performance and those based on
bias metrics. These findings highlight the need to evaluate models based on metrics beyond the simple loss
functions used to train the models themselves to get a complete picture of the models accuracy, bias and
generalizability. Now that the models have been validated for performance and bias, we discuss their
interpolation capabilities in the next section.
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Figure 6.Model performance: (a), (b) predicted vs the true viscosity values from KRR and LASSO ensemble models, respectively.
The black squares are for the Vlugt data set and the red circles are for the interpolation data generated in this work. The black
dashed line represents the y= x line. (c) Comparison of the mean absolute error (MAE) and mean absolute percentage error
(MAPE) of all the seven ML models studied in this work. The performance of the empirical correlation by Lautenschlaeger and
Hasse [108] is also shown for comparison. The black bars show the MAE and the red bars show the MAPE. The error bars indicate
the 95% confidence interval region. The filled regions of the bars indicate the irreducible errors (0.027 for MAE and 0.8% for
MAPE) in the Vlugt data set (section 3.1.2). See the section 3 for model description and performance estimation.

Figure 7.Model ranking: grid plots of model’s ranking on the entire Vlugt data based on various metrics. The text and color of
each square represent the relative ranks of models. Each row shows the ranks of the model labeled on the y-axis and each column
corresponds to the metric based on which the ranking was done. The metric values are computed using the ensemble predictions
of the ML models on the entire Jamali data [84]. Lower model rank is better.

4.2.1. Interpolation behavior
Figure 8 shows the predicted viscosity values from KRR, ANN, SVR, RF, KNN, and LASSO models at the
interpolation points plotted against X1 feature values. The color of the points (represented as dashes in the
figure) indicates the distance from the nearest training data point that the models have seen, with darker
shades being farther away. The viscosity values from the Vlugt data set are also shown (as red diamond
symbols) for comparison. KRR, SVR, and ANN models show a smooth variation as the feature values move
farther away from their corresponding values in the Vlugt data set. On the other hand, RF and KNN models
show sudden discontinuities in the predicted viscosity values at some specific X1 values. These
discontinuities are probably due to the presence of decision boundaries in RF and a sudden change of nearest
neighbors in the case of KNN. Such sudden discontinuities are incompatible with viscosity which is expected
to be continuous (at least as long as there is no phase transition).

4.3. Uncertainty quantification
As demonstrated in the previous sections, the performance of ML models trained on small data sets can have
wide variations. In this regard, models that can estimate the uncertainty on individual predictions can help
alleviate this issue. The uncertainty estimates can be used as a guide to end-users about the reliability of a
given prediction and thus of the models. More generally, uncertainty quantification has many other
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Figure 8.Model interpolation: (a)–(f) show the predicted viscosity values from the ensembles of KRR, ANN, SVR, RF, KNN, and
LASSO, respectively, in the X1 interpolation range. Red diamonds are viscosity values from the Vlugt data set. The color of the
dashes indicate the distance from the nearest Vlugt data point in the scaled feature space (abscissa). See section 3 for details on
feature scaling and the construction of the interpolation grid.

Figure 9. Uncertainty comparison: the standard errors of the predicted viscosity values plotted against their corresponding true
standard errors. The standard errors from the ensemble of KRR models are shown as black circles and those from the GPR model
are shown as red squares. The grey dashed line corresponds to y= x and is drawn as a guide to the eye.

applications [71, 73–75, 130] such as—setting the AD of the ML models [121], active learning for generating
data on the fly [131, 132], etc.

In this work, we used two approaches to estimate the uncertainty—probabilistic ML method and
ensemble ML method. The probabilistic ML methods inherently capture the uncertainty through their
model architecture, whereas the ensemble ML approach uses an ensemble of ML models on several random
realizations of the data. GPR was the choice of probabilistic ML method due to its simplicity (few
hyperparameters), wide applicability and near universality. KRR was used to test the ensemble approach
again due to its simplicity (two hyperparameters), training speed (analytical solution) and wide applicability.

Figure 9 compares the standard error estimated from the ML models and the true standard error of the
data. Both GPR and ensemble KRR methods show good agreement with the true data. The standard errors
predicted by GPR show a slightly better agreement with that of the data than KRR ensemble does, especially
at high error values. This is because the ensemble methods capture the uncertainty in the data indirectly by
repeated sampling from the training data set. On the other hand, the standard error values of the data are
directly fed into the GPR training. A similar observation was made by Schroeter et al on their comparison of
GPR and ensemble methods to predict error bars on the solubility data [121].

Information about closeness of a new query point to the training data would be useful to decide whether
or not to trust the values predicted by the model. This information can be naturally encoded into GPR in the
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Figure 10. Interpolation uncertainty: (a) and (b) show the GPR predicted relative standard error (%) plotted against the
interpolation distance in the X1, σ2 interpolation grids, respectively. (c) and (d) show the KRR ensemble predicted relative
standard error (%) plotted against the interpolation distance in the X1, σ2 interpolation grids, respectively. The colors indicate the
predicted mean viscosity value corresponding to the interpolation point. The blue horizontal dash-dot line indicates the average
standard error (%) (2%) of the Vlugt data set and the red horizontal dashed line indicates 10% standard error (%) which is then
used to define a qualitative cut-off for the applicability domain. The interpolation distance is computed in the scaled feature space.

Figure 11. Applicability domain (AD): MAE values of the ensemble ML models estimated on the interpolation data set. The red
bars indicate the MAE values on the entire interpolation data (without applicability domain) and the black bars indicate the MAE
values on the part of the interpolation data that falls within the applicability domain (In-AD). Due to the small size of
interpolation data set, these MAE values should be compared in a qualitative sense.

form of epistemic uncertainty [131]. Ideally, the predicted standard error should increase beyond the natural
uncertainty in the data as the query point moves away from the training data set. Figures 10(a) and (b) show
the predicted relative standard error from the GPR model plotted against the interpolation distance with the
colors indicating the predicted mean viscosity value. The predicted relative standard errors clearly increase
with increasing interpolation distance. However, this behavior could not be seen in the case of relative
standard errors estimated by the ensemble method as seen in figures 10(c) and (d). Hence, the uncertainties
estimated by GPR represent the true uncertainties better and also systematically increase when the query
points move far from the training set. Additionally, GPR needs to be trained only once when compared to
ensemble methods which need to be trained over multiple realizations of the training set.

Finally, the standard errors predicted by the GPR can be used to construct AD of the ML models [121].
For example, for queries which have a distance less than 0.2 (in the scaled feature space) from the nearest
training point, a relative error of less than 10% can be expected (figure 10). Hence, the scaled distance of 0.2
can be set as a limit for the AD, beyond which the predictions from the ML models need to be treated with
caution. Though such a distance based approach is simple, it can be applied to any ML model thereby
justifying its use [121]. Also, such distance based AD methods have been successfully implemented for QSAR
[119] and ML models [121].
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The interpolation data set was split into In-AD and Out-AD based on whether the points fell within the
AD or otherwise. The performance of all the ML models on the In-AD data set is much better than that on
Out-AD set, demonstrating that the application of AD can be used to detect and remove the outliers
(figure 11). Also, the improvements from the AD (though constructed from GPR only) were observed across
all the ML models and performance metrics.

5. Conclusions

In this work, we trained and evaluated several successful ML models to predict the shear viscosity of binary
LJ fluids. Being a collective property, shear viscosity is expensive to predict from equilibrium atomistic MD
simulations and hence only small data sets can be found in the literature. The major challenges posed by such
small data sets to build ML methods on are discussed. Specifically, we focus on—(a) model selection and
performance estimation, (b) performance metrics, and (c) uncertainty quantification.

ML models are prone to overfitting on small data sets at both the model parameters and hyperparameter
levels. We discuss various model selection methods—k-fold CV, nested k-fold CV, Monte Carlo CV,
etc—that are generally used to address this issue. While these methods are commonly used for selecting
hyperparameters, the generalization error (performance evaluation) is estimated on a single unseen data set
(test set). We demonstrate that such estimates are prone to wide variability because of the small data set size.
The hyperparameter optimization landscapes of LASSO, KRR models are shown to have ‘flat-minima’
thereby making it difficult to unambiguously select the optimal hyperparameters. We compared two simple
CV procedures—SS-CV and KFS-CV and found that while their ME estimates were almost identical,
KFS-CV showed a lower variance. Hence, it was chosen to both the model selection and performance
estimation tasks simultaneously.

We discuss the role of performance metrics in model training and model evaluation, both from
theoretical and empirical standpoints. We compare several commonly used metrics like MSE, MAE, MAPE
and R2 and discuss their relevance to the viscosity data set. We propose a holistic model ranking procedure
based on inputs from multiple complementary metrics. The interpolation behavior of the ML models are
compared qualitatively. While the KRR, ANN and SVR models showed smooth interpolation behavior, RF
and KNN models showed sudden discontinuities and are hence considered unsuccessful. The successful
models are also shown to outperform the best-in-class empirical model of Lautenschlaeger and Hasse [108]
in the prediction of shear viscosity of binary LJ fluids.

We present two methods to estimate uncertainty in individual predictions from the ML models—(a)
GPR and (b) ensemble of KRR ML models. The uncertainty (in terms of standard error) estimated by the
methods showed overall agreement with the true uncertainty of the data, with GPR faring slightly better. The
behavior of the estimated uncertainty by both the methods in the interpolation feature range is also
compared. The GPR’s uncertainty steadily increased as the query data points moved away from the training
data, while no discernible pattern could be identified in the uncertainty from the ensemble method. The
relative standard error estimated from the GPR model can be used to set distance limits for the query points,
thereby defining the AD in which the results from the ML models are reliable. We found that the points of
the interpolation set that fell within the AD were better estimated by the ML models than the ones that fell
outside the AD, thereby demonstrating the utility of AD. Finally, the principles discussed in this work can be
applied to develop ML models of viscosity for complex fluids. However, in such fluids, the identification of
the features that are most relevant to shear viscosity would also be non-trivial and constitutes a part of our
future work [133]. Also, incorporation of physical constraints (for example asymptotic behavior of viscosity
in the zero density regime [99, 134]) into the architecture of the ML models can improve the robustness of
the models [135] and will be explored in our future works.
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Appendix. Performance metrics

ei = ypredi − ytruei (A1)

ri = (ypredi − ytruei )/ytruei (A2)

ȳ=
1

N

N∑
i=1

ytruei (A3)

ME=
1

N

N∑
i=1

ei (A4)

MPE=
1

N

N∑
i=1

100× ri (A5)

MSE=
1

N

N∑
i=1

e2i (A6)

MedSE=median(e2i ) (A7)

MAE=
1

N

N∑
i=1

|ei| (A8)

MedAE=median(|ei|) (A9)

MAPE=
1

N

N∑
i=1

100× |ri| (A10)
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MedAPE= 100× median(|ri|) (A11)

R2 = 1−
N∑
i=1

|ei|2

|ytruei − ȳ|2
(A12)
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