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1.  Introduction 

While PIV has been in use for more than 30 years, there is 
still a lack of quantifying the measurement uncertainty in a 
robust and accurate way for real experimental data. Often a 
rough estimate is quoted as 0.05 to 0.1 pixel, or one relies e.g. 
on inspection of the variation of the displacement field over 
a spatial or temporal neighborhood where the flow field is 
expected to be smooth. Most work has been done on synthetic 
data simulating varying error sources, but typically this under-
estimates the errors in a real experiment. Only in recent years 
have there been efforts to derive the measurement uncertainty 
for a particular experimental setup and for every vector in the 
measured velocity fields.

In the ‘uncertainty surface’ method developed by Timmins 
et al (2012) the recorded image is analyzed for parameters 
that influence the error. At present, four parameters are exam-
ined: particle image size, particle density, displacements and 

shear. Initially the PIV algorithm has to be tested with syn-
thetic images that vary these parameters, i.e. generating an 
uncertainty surface for a particular algorithm and selected 
processing options. By comparison with the measured param-
eters (particle size, etc) inside each interrogation window, an 
uncertainty measure can be assigned for each vector.

The ‘peak ratio’ method (Charonko and Vlachos 2013) 
assumes that the ratio between the highest correlation peak 
and the second highest correlation peak is a good measure of 
the uncertainty. An empirical relationship has been derived 
between the ratio and the most likely uncertainty of the dis-
placement. The peak ratio has also been used by Persoons 
(2014) in conjunction with local displacement fluctuations 
over a spatial 5  ×  5 and temporal 9-point kernel in time-
resolved PIV. These fluctuations are a combination of phys-
ical turbulent fluctuations and measurement uncertainty and 
were shown to successfully guide the settings and processing 
of a variable pulse separation scheme in order to enhance the 
dynamic range of the PIV measurement. Similar advanced 
multi-pulse or multi-frame techniques (see e.g. the review by 
Westerweel et al 2013) would benefit in the same way from 
accurate uncertainty estimation.
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In the ‘image matching’ or ‘particle disparity’ method 
(Sciacchitano et al 2013), the measured displacement field 
is used to dewarp back the second image (or both by half) 
to overlay on the first one. The position of the particles for 
both frames is computed in each interrogation window and the 
residual disparity in the position of matching particles leads 
to an estimate of the uncertainty of the displacement vector.

All uncertainty quantification methods have their strengths 
and weaknesses and ability to account for possible error 
sources.

In general, planar PIV relies on matching two images and 
to compute a displacement field dx(x, y) as the best fit between 
the intensities in images I1 (x, y) and I2 (x + dx(x, y), y + dy(x, 
y)) = *I2  (x, y). Usually this involves maximizing the correla-
tion given by the sum of *I I( ).1 2  Alternatively one can mini-
mize the sum of the L2-norm or mean squared error − *I I( ) ,1 2

2  
sometimes called minimum quadratic difference (MQD), 
least squares matching (LSM) or the sum of squared differ-
ences method (SSD). It can be shown that the two methods are 
mathematically identical provided the intensity I is normal-

ized by Σ– –I I I I( )/( ( ) )avg avg
2 1/2 (Medan et al 1991). 

These image matching algorithms can be further differ-
entiated into local or global regularization schemes. Global 
methods like different types of optical flow (Horn and Schunck 
1981, Lukas and Kanade 1981) iteratively optimize the whole 
displacement field at once while local methods more common 
in PIV select a small interrogation window to be matched to 
the corresponding window in the second image and repeat the 
procedure for all windows in the image. Typically an iterative 
multi-pass predictor–corrector scheme is used (e.g. Schrijer 
and Scarano 2008). Due to the intermediate vector field regu-
larization including outlier removal, this can then be consid-
ered an intermediate local–global approach.

The focus here is not on a particular PIV algorithm, but 
on providing a generic uncertainty estimation method for any 
algorithm as a post-processing step once the displacement 
field has been calculated. It is an extension of the particle dis-
parity method (Sciacchitano et al 2013) but instead of taking 
individual particle displacements it analyzes individual pixel 
contributions to the correlation peak.

2.  Uncertainty estimation from correlation  
statistics

The general concept is presented in figure 1. For computing the 
uncertainty of a single vector inside an interrogation window 
one could in principle divide the interrogation window into 
smaller parts (figure 1(a)) where each sub-window corre-
sponds to a displacement vector with higher noise level due 
to fewer pixels and fewer particles. So the standard deviation 
of these n × n vectors divided by ( × )n n  is a rough estimate 
of the uncertainty of the vector computed from the complete 
interrogation window, given idealized circumstances with no 
outliers, no small-scale flow gradients, etc.

The particle disparity method goes to smaller scales ana-
lyzing individual particles and their spread in displacements 
(figure 1(b)) and provides better statistics for the uncertainty 

estimation. The correlation statistics method presented here 
zooms in even further to individual pixels and their fluctuating 
contributions to the shape of the correlation peak from which 
an uncertainty estimate is derived (figure 1(c)). As shown later, 
despite analyzing single pixels and their neighbors, the effec-
tive local spatial scale is determined by the width of a spatial 
covariance matrix, which is again related to the average par-
ticle image size.

The correlation statistics method takes as input the two 
images to be matched and the displacement field computed by 
PIV. First image 2 is dewarped back onto image 1 using the 
displacement field u(x), i.e.

*  = +I x I x u( ) ( )2 2� (1)

requiring a sufficiently accurate high-order sub-pixel interpo-
lation scheme (Astarita and Cardone 2005). To simplify the 
equations, this asymmetric dewarping scheme is used here 
keeping I1 constant. This is sometimes used for time-resolved 
PIV processing with subsequent Lagrangian analysis of fluid 
element trajectories. For standard double-frame PIV the 
symmetric dewarping of both frames with ±u/2 is preferred, 
applied here to process the data in section 3. Both methods 
have been implemented in the DaVis software and no differ-
ence in performance has been detected.

The following equations are given only for the u-compo-
nent in the x-direction, but apply equally to the v-component. 
The sums are evaluated over all =  N n2 pixels of an interroga-
tion window of linear dimension n, in general over a region 
related to the effective spatial resolution Lsr. This needs to be 
determined for every PIV algorithm and set of parameters, as 
discussed again in section 3.2. Depending on window overlap 
factor and details of the multi-pass scheme with intermediate 
vector regression filter, the effective spatial resolution can be 
quite different from n as described below.

Instead of a square window the sums can be evaluated over 
a somewhat larger Gaussian weighted interrogation window, 
where the diameter of the 2D Gaussian weighted curve is 
close to Lsr. In general, when computing the uncertainty one 
should use the same square, round or elliptical interrogation 
window, weighting function and sub-pixel interpolation func-
tion as in the underlying PIV algorithm.

It is assumed that the PIV algorithm has converged suf-
ficiently such that for the computed displacement u the cor-
relation function 

∑ ∑= + =C u I x y I x u y I x y I x y( )   ( ( , ) ( , )) ( ( , ) *( , ))1 2 1 2
� (2)

is at a maximum with zero slope dC/du. A small distance ±Δx 
away from u the correlation function Δ= ++C C u x( ) should 
therefore be equal to Δ= −−C C u x( ):

∑Δ Δ

Δ

= − = +

− − ≅

+ −C C C I x y I x x y

I x y I x x y

( ( , ) *( , )

( , ) *( , )) 0.

1 2

1 2

�
(3)

Typically Δx will be one pixel as discussed later. Non-zero 
ΔC indicates that the algorithm was not able to converge for 
some reason, and taking the three points =C C u( ),0  C− and 
C+ one could calculate an improved optimal displacement  
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u + δu which would be equivalent to an extra iteration step 
of the PIV algorithm. As shown in figure 2, for non-zero ΔC 
fitting a Gaussian curve through the three points leads to the 
residual displacement δu given by

δ Δ

Δ Δ

= −
   −    −  

=      

=      −   +

+ −

+ −
− +

± ±

u
x C C

C C C
f C C C

f C C C C C

2

log( ) log( )

2 log( ) log( ) log( )
( , , )

( , /2, /2)

0
0

0
�

(4)

with   = +± + −C C C( )/2.
Equation (3) can be rewritten as

∑ ∑Δ Δ Δ

Δ

= = +

− +

C C I x y I x x y

I x x y I x y

    ( ( , ) *( , )

( , ) *( , ))

i 1 2

1 2

�

(5)

ignoring small differences at the window border when shifting 
the second term by Δx. Now every term Δ  Ci represents the 
elemental contribution to the total correlation difference ΔC. 
All terms Δ  Ci and the sum ΔC would be zero for perfect image 
matching, i.e. if Δ= *I Iconst .1 2  All pixel-wise contributions to 
the side lobes of the correlation peak are equal (figure 3, left).

Due to various error sources I1 and *I2  will not match per-
fectly even for the true displacement utrue. Assuming one 
would dewarp I2 by the true displacement utrue, the pixel-wise 
contributions to the side lobes of the correlation peak are une-
qual and the individual Δ  Ci  add up in a random walk fashion 

Figure 1.  Principle of uncertainty estimation by (a) splitting into sub-windows, (b) particle disparity and (c) correlation statistics method.

Figure 2.  Correlation function C(u).
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•
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to a non-zero ΔC (figure 3, middle). This difference will be 
optimized away by the PIV predictor–corrector scheme such 
that ΔC is zero again, leading to an erroneous measured dis-
placement δ=   +u u umeas true  (figure 3, right). Thus from the 
given known variability in ΔCi an estimate of the standard 
deviation σΔC of ΔC can be derived which is then propagated 
by equation (4) to an uncertainty estimate of the displacement 
field.

In general, the standard deviation of ∑Δ Δ=C Ci is 

related to the sum of the covariance matrix of ΔC :i

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑ ∑

∑
∑

σ Δ Δ

Δ Δ

Δ Δ

≡ ≡

=

=

Δ = =

=

=

C C

C C

C C

var var

cov( , )

cov( , ) 

C i

N
i x y

n
xy

i j

N
i j

x y x y

n
x y x y

2
1 , 1

, 1

, , , 1 , ,
1 1 2 2

1 1 2 2

�

(6)

with the requirement that the ΔCi have a zero mean 
∑ Δ =( )C 0 .i  The auto-covariance terms are non-zero inside  

a neighborhood (x1, y1 close to x2, y2) given by the particle 
image diameter. Outside, the pixel intensities become uncor-
related and the autocorrelation drops to zero. So the right-
hand side with a 4D sum can be rewritten as a 2 D sum over 
distances Δx, Δy:

∑

∑ ∑ ∑

σ Δ Δ

Δ Δ

=

= ⋅ =

Δ Δ Δ

Δ Δ Δ Δ

Δ Δ + +

Δ Δ = + + Δ Δ

n C C

C C

cov( , ) 

( ) S  .

C x y
x y x x y y

x y
x y x x y y

x y
x y

2 2
,

, ,

, x,y 1

n
, ,

,
,

�

(7)

In the case of complete independence between Δ Δ   C Cand ,i j  
i.e. with only a single non-zero covariance term S0,0 for 
Δ Δ= =x y 0, this reduces to the random walk equation

∑σ σ Δ= =Δ ΔN C  .C C i
2 2 2

i
� (8)

Unfortunately Δ Δ   C Candi j are not completely uncorrelated 
for i ≠ j. So the covariance sums Δ ΔS x y,  need to be evaluated 

over a sufficiently large neighborhood Δ Δ  ± ±x y,  given 
roughly by the particle image size.

Finally, using equation (4) the uncertainty estimation of the 
displacement field can be computed as

σ σ σ  =    −     +Δ Δ± ±f C C C( , /2 , /2)u C C0� (9)

since the right-hand side is first-order linear in σ  Δ −C/C  pro-
vided σΔC is sufficiently smaller than −   ±C C ,0  i.e. it is accu-
rate for σ ≲  0.3 px.u  This has been validated by Monte-Carlo 
simulations.

For illustration the field of ΔCi has been plotted in figure 4 
for different types of noise. At the top the particles have a 
positional jitter, similar to Brownian motion in µPIV, of up 
to 0.1 px, which is barely visible. The correlation differences 
ΔCi in the x-direction clearly show positive and negative shifts 
at the particle locations. This is also the basis for the particle 
disparity method of Sciacchitano et al (2013). In the middle, 
only camera pixel noise has been added, a background level 
of noise together with photon shot noise proportional to the 
square root of the intensities. The correlation difference field 
has a grainy appearance with higher noise at the particle 
positions.

Finally, at the bottom the particles have a 10% out-of-plane 
motion within a light sheet with Gaussian intensity profile. 
Where particles overlap the change of a combination of weak 
and bright particle to bright and weak due to movement within 
the light sheet introduces a strong error, clearly visible for 
example in the circled area with a virtual displacement in the 
negative x-direction. A weaker pattern of horizontally aligned 
blue-green or green-blue stripes indicates single particles 
changing in intensity, but the overall noise is dominated by 
overlapping particles.

2.1.  Implementation details

First of all, the choice of Δx in equation  (3) and following 
is guided by the requirement that it should capture well the 
form of the correlation function to be maximized, where the 
width is related to the particle image size. Therefore Δx must 
be smaller than the particle image size, but considerably larger 
than the computed σ  .u  So a natural choice is Δx = 1 pixel, 
which also requires only a single dewarped function *I x( )2  

Figure 3.  Correlation function between I1 and *I2  for ideal noise-free image (left). With added noise this would lead to correlation peak 
asymmetry (middle). The PIV predictor–corrector scheme shifts the correlation peak back to 0, thus introducing a measurement error 
(right).

Meas. Sci. Technol. 26 (2015) 074002
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instead of three in equation (3) and following. For very large 
particle image sizes it might be advantageous to use larger Δx 
(e.g. 2)—and also for the PIV algorithm itself, incidentally—
but this has not been investigated.

For particle-related error sources—in particular for out-of-
plane motion or random particle motion due to e.g. Brownian 
motion in µPIV—the auto-covariance matrix Δ ΔS x y,  is about a 
positive 2D Gaussian curve with a diameter roughly given by the 
average particle image size as shown in figures 5(c)–(e). Here 

Δ ΔS x, y is first evaluated for all Δx, Δy < 5 px, but only the inner 
values are summed up until S S/ 0,0 drops below 0.05 to avoid 
adding outer random and possibly negative covariance terms.

In the case of pure camera noise independent for each 
pixel, due to the inverse coupling between I x( ) and ( + )I x 1  in 
equation (5), the covariance for Δ Δ= ±   =x y1, 0 is negative 
but relevant (similar for the y-component in the y-direction) 

as shown in figure  5(a), which makes it difficult to find a 
suitable criterion for limiting the summing of S. To simplify 
processing, first all ΔCi are smoothed in the x-direction by a 
simple filter Δ Δ Δ Δ= − + + +′C x C x C x C x( ) ( ( 1) 2 ( ) ( 1))/4i i i i  
(same in the y-direction for the y-component) which elimi-
nates the negative covariance terms (figure 5(b)). This does 
not change any other property of the statistical analysis. For 
particle-related noise it only makes the S-matrix slightly wider 
in one direction.

The relevant values of C0, C+, C− and Δ ΔS x, y (Δx, Δy = 0–4) 
need to be evaluated as sums over the interrogation window, 
and in the case of Gaussian weighted windows as weighted 
sums over an area at least twice as large as the nominal inter-
rogation window size. In particular for 75% overlap this can 
lead to processing times equivalent to 2–3 PIV iterations. A 
faster implementation consists of computing the Cs and Δ ΔS x, y 

Figure 4.  First and second image frames (left and middle) and correlation difference ΔCi (right) for Brownian type of particle jitter (top), 
camera pixel noise (middle) and out-of-plane motion (bottom). Bluish color indicates negative values, green to red positive values of ΔC .i

Figure 5.  Typical autocorrelation matrix Δ ΔS S/x y, 0,0 for pure pixel noise and particle image size of 2.5 px without (a) and with (b) smoothing 
of ΔC ,i  and for sizes of 1.0 px (c), 2.5 px (d) and 4.0 px (e) with out-of-plane motion of 5% and with ΔCi smoothed.

Meas. Sci. Technol. 26 (2015) 074002
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first as fields of the whole image for each pixel. These fields 
are spatially smoothed—equivalent to the weighted summing 
process—by a fast recursive 2D Gaussian filter (Lukin 2007) 
with a filter length equal to the effective interrogation window 
size followed by multiplication by the filter length squared 
(difference between smoothing and summing). Then at each 
vector location the local values of C0, C+, C− and Δ ΔS x y,  are 
taken to compute σ .u  This reduces the processing time to less 
than one PIV iteration. Further implementation on a GPU has 
reduced the processing time by another order of magnitude. 
This scheme has also been successfully tested for PIV pro-
cessing with square non-weighted windows, where due to 
the multi-pass PIV predictor–corrector scheme the effective 
filter shape is also closer to a Gaussian curve than to a top-hat 
function.

The above 1D derivation is done independently for the x- 
and y-components of the displacement field. Dependencies 
between x- and y-directions have not been observed yet for 
real PIV data, although, e.g. for strong astigmatism in oblique 
directions, one could expect some cross-terms. The discus-
sion here is restricted to 2D displacements under various error 
sources.

3.  Synthetic data

The procedure has been tested with synthetically generated 
images, varying parameters such as noise level, particle image 
size, seeding density and out-of-plane motion. The image size 
is 1000 × 1000 pixels. Default settings are particle image size 
of 2.5 px, seeding density of 0.1 particles per pixel (ppp), peak 
particle intensity of 1000 counts, particles distributed in a 
Gaussian laser intensity profile, and a constant displacement of 
0.6 pixel in the x-direction, 0.3 pixel in the y-direction and no 
out-of-plane motion. The particle image size is defined as 2σ 
with an intensity profile proportional to σ− + yexp( (x )/2 ).2 2 2

Processing is done with LaVision DaVis 8.2 using 4-passes, 
75% overlap, interrogation windows with a Gaussian weighting 
function and nominal window sizes of 16 × 16 up to 64 × 64 
pixels. Due to the intermediate vector regularization adjusting 
to shorter displacement wavelengths, for 32 × 32 windows the 
effective window size is e.g. 32/28/22 pixels for an overlap of 
0%/50%/75%. The method used here to measure the effective 
spatial resolution is similar to Elsinga and Westerweel (2011).

Assuming a typical camera with a conversion rate of 4 e−/
count, a Gaussian background pixel noise of 16 e− (4 counts) 
has been added to the images. In addition there is photon shot 
noise proportional to the square root of the number of photo-
electrons, leading to noise of up to 16 counts for pixels with 
1000 counts intensity.

In the following figures, the total uncertainty σ σ σ= +u v
2 2 

is combined to an average value by computing the root-mean-
square (rms) of the uncertainties of all vectors (see appendix 
in Sciacchitano et al 2015). The total true error is computed 
as the rms of the differences of all vectors relative to the 
known displacement. It is usually dominated by the random 
part; significant bias is only encountered for small particle 
image sizes  ≤1 px (‘peak locking’). For the range of tested 

parameters no outliers have been observed and no post-pro-
cessing has been done.

First varying only the background pixel noise it is shown 
that the uncertainty can be accurately estimated for window 
sizes of 16 × 16 to 64 × 64 for a wide range of noise levels 
given in percent relative to the particle peak intensity of 1000 
counts (figure 6). Only for very large noise amplitudes do the 
uncertainties level off at about 0.3–0.4 px as expected from the 
limitation of equation (9). The relevant error levels in PIV to 
be considered are typically 0.02 px to 0.2–0.3 px, rarely less 
due to all error sources combined and, if larger, the correlation 
peak is less well defined with possibly many outliers and one 
should consider improving the experimental setup or using 
larger interrogation windows.

Varying the out-of-plane motion from 0 to 30% of the light 
sheet thickness is shown in figure 7 for particle image sizes 
of 1.5 px (left) and 2.5 px (right). The uncertainties are cor-
rectly calculated for window sizes of 32 × 32 and 64 × 64, 
but again underestimated slightly for 24  ×  24 and by 20% 
for 16 × 16 windows for a particle size of 2.5 px. The error 
in the case of out-of-plane motion is dominated by (possibly 
very few) overlapping particles which change their intensity 
from e.g. bright–weak to weak–bright as they move together 
through the light sheet as mentioned before. Thus a strong vir-
tual in-plane displacement is introduced. The error is smaller 
for a particle size of 1.5 px because the probability of particles 
overlapping is significantly smaller.

As noted by Nobach and Bodenschatz (2009) this error 
level is quite independent of the seeding density. For low 
seeding densities there are fewer particles overlapping, but 
they contribute significantly to the error level since there are 
few particles in total. Conversely, for high seeding densi-
ties, almost all particles overlap and produce errors, but the 
information content is much higher, which reduces the error 
correspondingly.

This is confirmed in figure  8 for an out-of-plane motion 
of 10%, where the seeding density is varied from very low to 
very dense with almost constant error level. The uncertainty 

Figure 6.  Error as a function of Gaussian pixel noise.
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quantification works reasonably well with slight overestima-
tion for 64 × 64 windows and underestimation for 16 × 16.

In general, out-of-plane motion is often the dominant error 
source in PIV processing (Nobach and Bodenschatz 2009). 
The same effect is also introduced by a misalignment of the 
profile of the first and second laser pulses or unstable laser 
intensity profiles from shot to shot.

Another error source related to particle size is given by 
the random Brownian motion of each particle in µPIV. Here 
the error and estimated uncertainty become lower with higher 
seeding density due to the averaging effect of more particles 
(figure 9). Again the agreement between true error and uncer-
tainty is good except for 16 × 16 windows, where the uncer-
tainty is about 20–30% too low.

Varying the particle image size for constant out-of-plane 
motion of 10% shows again a reasonable agreement between 
the average true error and the uncertainty (figure 10). For sizes 

of  <1 pixel the random and bias errors increase drastically 
(‘pixel locking’) due to unrecoverable loss of information. 
Closer inspection reveals that only the random part of the error 
can be estimated by the uncertainty quantification, while the 
systematic bias remains undetected. Errors for larger particles 
are slightly underestimated, especially for 16 × 16 windows.

Finally the effect of in-plane gradients is investigated by 
generating synthetic images with a width of 400 and height of 
1000 pixel and varying the in-plane shear from 0 to 30%, i.e. 
up to −60/+60 px displacement in y on the left and right of the 
image, respectively. This amounts to up to 10 px change inside 
a 32 × 32 interrogation window, which can only be handled 
by PIV algorithms using image deformation techniques. As 
shown in figure 11, the true error for a particle image size of 
2 px and no out-of-plane motion stays below 0.01 px, which 
validates the accuracy of the synthetic image generator, the 
PIV algorithm and the dewarping function under such extreme 
conditions. Even an inaccuracy in a vector position of only 
0.1 px would lead to a bias error of already 0.03 px.

The computed uncertainty is overestimated as 0.03 px 
for 30% shear, even more for a particle image size of 4 px. 
This is probably due to image dewarping shearing round par-
ticles into ellipses rotated in different directions in the first 

Figure 7.  Error as a function of out-of-plane motion. Particle image size = 1.5 px (left) or 2.5 px (right).
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Figure 8.  Error as a function of seeding density for out-of-plane 
motion of 10%.
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Figure 9.  Error as a function of seeding density for random 
Brownian particle motion of ±0.1 px.
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and second frames. While the PIV algorithm correlating two 
rotated ellipses still computes an accurate mean displacement, 
the uncertainty method assumes that these intensity differ-
ences lead to additional noise, not knowing that in the end 
the symmetrical contributions still cancel out to an accurate 
displacement vector.

Often such strong velocity gradients are accompanied by 
additional larger error sources like out-of-plane motion as 
shown in figure 11 for 10% out-of-plane motion. Again a good 
agreement between true error and uncertainties is achieved.

More complicated is the subject of second-order gradients, 
i.e. velocity fluctuations of small-scale wavelengths, where 
the amplitude is reduced by the PIV algorithm due to the finite 
spatial resolution (Schrijer and Scarano 2008). A detailed 
analysis of the response function of the PIV algorithm and 
the computed uncertainties is beyond the scope of this paper, 
including the basic question of whether such truncation errors 
should really be considered as ‘errors’ with the—unrealistic—
expectation that uncertainty quantification methods should 

be able to estimate them, or whether the uncertainty should 
rather be quoted relative to the known spatial and temporal 
response function of the PIV measurement system.

3.1.  Limitation of the uncertainty quantification

First of all, it should be noted that this uncertainty quantifica-
tion method is not able to detect outliers. It is always assumed 
that outliers have been removed beforehand by some e.g. 
median, filter and that the investigated correlation peak is the 
true one. The uncertainty method has no indication whether 
the correlation peak found by the PIV processing routine is 
the correct one. In general, outliers will have larger uncertain-
ties. This can help to detect them, e.g. by a weighted median 
filter with a weight inversely proportional to the uncertainty.

It is also important to notice that the uncertainty estimation 
field will show quite some variability in the order of 5–25% 
even with perfect synthetic data with constant displace-
ment field and the same parameters everywhere as shown in 
figure 12. This is partly due to the variability of the random 
pattern with a greater or lesser number of particles or overlap-
ping particles in each interrogation window. But additionally 
there is the intrinsic random character of the uncertainty esti-
mation due to the random walk process (equations (6)–(8)). 
This standard deviation of the standard deviation (‘SoS’) has 
a relative variability of about ± N1/ 2  given N independent 
events, which for e.g. 10 particles per interrogation window 
is already ±22%.

Another limitation of the above uncertainty quantification 
method is the case of insufficient independent events con-
tributing to the statistical analysis, for example in the case 
of too few or too large particles in 16 × 16 windows. So far 
correction terms have not yet been calculated for such small-
number statistics. It may require again counting particles as in 
the ‘image matching’ method (Sciacchitano et al 2013), but 
it is difficult counting e.g. overlapping particles as would be 
required for errors dominated by out-of-plane motion.

Figure 10.  Error as a function of particle image size for out-of-
plane motion of 10%.
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Figure 11.  Error as a function of shear rate for different particle 
image sizes and out-of-plane motions.
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Figure 12.  Typical uncertainty field with an average of 0.142 px 
and standard deviation of 0.018 px.

Meas. Sci. Technol. 26 (2015) 074002



B Wieneke﻿

9

Finally the method mainly estimates the random part of 
the uncertainty. Bias errors can in principle be quantified by 
equation (4), but it is assumed that the PIV algorithm is con-
verged sufficiently so that the correlation peak is symmetrical 
and there should be no bias per se. Unknown biases as in 
strong peak locking stay undetected and may be better quanti-
fied by the uncertainty surface method (Timmins et al 2012). 
The magnitude of the bias error is usually smaller than the 
random error/uncertainty even for strong peak locking, but 
may become dominant in derived statistical quantities.

In practice, small bias terms in equation  (4) have been 
observed even for larger particle image sizes e.g. due to the 
PIV algorithm not converging to a fixed value, but oscil-
lating somewhat from iteration to iteration. These small bias 
terms—not being related to true bias error sources—are there-
fore considered to be more or less of random nature and are 
now added in the latest implementation (Davis 8.2.2) to the 
random uncertainty by σ σ σ= + .total

2
bias
2

random
2

3.2.  Preparation for uncertainty propagation

Subsequent uncertainty propagation into derived quanti-
ties like vorticity, divergence, turbulent kinetic energy or 
Reynolds stresses requires the knowledge of the spatial and/
or temporal autocorrelation coefficients of the true errors as 
well as the correlation between u and v error terms, and w for 
Stereo-PIV. The details of the uncertainty propagation will be 
subject of future investigations (see also Wilson and Smith 
2013a, 2013b). Here only the spatial auto/cross-correlation 
coefficients are briefly investigated. This is independent of the 
type of uncertainty method. It is only a function of the image 
data and the PIV processing scheme.

For the synthetic data used for figures 6–11 there has been 
no significant coupling observed between the true errors δu 
and δv, δ δ ≤C u v( , ) 0.05, with the exception of data points 
with almost ideal image quality and errors below 0.01 px 
(e.g. figure 6, low noise). Here correlation values of the order 
of −0.1 to −0.3 have been measured. Since such low errors 
are typically not encountered in real experiments, this has not 
been investigated further. It may relate to some floor noise 
level of the PIV algorithm together with intricacies in the pro-
cessing scheme.

For Stereo-PIV, on the other hand, due to the 3C recon-
struction of (u, v, w) from (u1, v1, u2, v2) there is always a 
coupling in particular between u and w when e.g. the cam-
eras are aligned along the x-axis, since both u and w depend 
on u1 and u2. These coupling terms, which can be calculated 
directly from the calibration function or measured using syn-
thetic data, need to be taken into account in particular for the 
Reynolds stress Ruw and other quantities.

The average spatial autocorrelation function of the true 
error has been computed for the data in figures 6–10 as shown 
in figure 13 for the autocorrelation of the δu -component in 
the x-direction (AF(true error)), processing 32 × 32 interro-
gation windows with 75% overlap and a vector spacing of 
8 pixels. Beyond dx = 32 px the values stay close to zero. 
The same drop in correlation has been measured for the cor-
relation of δu in the y-direction as well as for δv in x- and 

y-directions. This is directly related to the effective spatial 
resolution of the PIV algorithm. The plotted solid curve indi-
cates the expected autocorrelation function if the PIV algo-
rithms were equivalent to a Gaussian shaped linear filter with 
a spatial resolution Lsr = 2σ of 18 px. This deviates slightly 
from Lsr = 22 px, which has been used for the computation 
of the uncertainties. Interestingly, the measured autocorrela-
tion of the fluctuation in the uncertainty values corresponds 
closely to Lsr = 22 px. Further investigation is needed to 
understand these relationships.

The effective spatial resolution has been determined by a 
method similar to Elsinga and Westerweel (2011) using syn-
thetic images with a step function in the displacement field. 
It can also be derived from the response of the PIV algorithm 
to sine-wave displacement fields of different wavelengths 
comparing to the sinc-response of a simple top-hat filter (e.g. 
Schrijer and Scarano 2008). In any case, the autocorrelation 
values needed for further uncertainty propagation can be 
taken from the average measured values, which for all types 
of synthetic data used here are highly constant with a standard 
deviation of less than 0.02 to 0.03.

4.  Conclusion

The local measurement uncertainty of a PIV displacement 
field is estimated based on a post-processing of the differences 
between the two images to be matched. The standard devia-
tion of the pixel-wise contributions of intensity differences to 
the shape of the correlation function is computed in a statis-
tical way. This is then related to the random uncertainty of the 
displacement vectors.

This uncertainty quantification method has been tested 
with synthetic data varying, e.g. random Gaussian noise, par-
ticle image size and density, in-plane and out-of-plane motion, 
and shows good agreement with the true random error in most 
cases, slightly underestimating the true error for 16  ×  16 
window sizes. The method is not able to estimate bias errors 
e.g. from peak-locking or another systematic error source.

The accuracy of this approach is furthermore investigated 
in designated experiments discussed elsewhere (Neal et al 
2015, Sciacchitano et al 2015) as part of an international 

Figure 13.  Spatial autocorrelation of the true error δu in the 
 x-direction.
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collaborative effort that includes comparisons to other PIV 
uncertainty quantification methods. It confirms the validity of 
the uncertainty method presented here.
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