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Abstract
The higher dimensional gravity theory of Lovelock is a fascinating generalization of Einstein’s gravity
theory and it is of extreme interest in theoretical physics as it delineates a wide class of relativistic
models. Here, we propose a short digest on Lovelock theory that represents a very beautiful
scenario to study how the differential geometry of gravity results corrected at short distance due to
the presence of higher order curvature terms in the action. As in the modern literature of cosmology,
the space-time has been supposed to be a dynamical manifold. Hence by admitting this fact in the
present study, we will be concerned with the flow equations of all the Lovelock configurations. In
particular, we shall make use of Ricci flow techniques to evolve the actions which are responsible
for higher order gravity theory. Finally, we shall attempt to evolve the Lovelock tensor to generate a
very useful non-linear heat diffusion equation that could analyze the mystery of higher order gravity
theory
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1 Introduction
Einstein’s general theory of relativity (G.R.) has been significantly enhanced and evolved under
various advanced differential geometric tools and conceptions and therefore behaving like a matchless
extraordinary piece of twentieth century Physics. The Einstein’s theory of G.R. includes the rigorous
pursuit of the principle of invariance of the laws of physics and therefore leads to a very surprising
idea that our space-time is a dynamical manifold.
This idea indulged into Physics, an abstract study of non-Euclidean geometry by various Mathematician
such as Gauss (1827), Gauss (1965), Gauss (1889), Riemann (2004), Levi-Civita (1899) and Levi-
Civita (1927) etc. It also delineates space and time to the status of dynamical structured cosmos. The
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applications of differential geometry to physics also play crucial role in Gauge theory. Moreover, the
possibility of representing Weyl’s-Gauge (conformal-Gauge) invariant theory in terms of connections
of fiber bundles has been of great interest. Afterward, to enhance the study on dynamical structured
cosmos, some modifications to Einstein’s tensor have been suggested in many contexts like; counter-
terms in G.R. to regulate singularities; scalar-tensor theories in inflationary contexts; terms appearing
in supergravity; low energy action from strings etc.
Towards the enhancement and reformation of Einstein’s tensor for dynamical structured cosmos,
various Geometers and Physicists have made extraordinary efforts from their own perspectives.
Among them, the first and foremost is Lovelock (1972), who has contributed at large by introducing his
very precious master piece ”The four dimensionality of space and Einstein’s tensor” [Lovelock (1972)].
In fact, by considering his work, many have made their fantastic contribution in the modern context
of dynamical structured cosmos. Caltenco et al. (2001) in his research work introduced well known
Lanczos potential (after the name of Prof. C. Lanczos) for the Kerr metric of dynamical structured
cosmos and developed an especial kind of Lanczos spin tensor for a rotating black hole. Further,
to pursue electrodynamics of classically charged particles in the dynamical manifold, Arreaga (2000)
has proposed some analogies between the Lanczos spin tensor for the conformal tensor of the space-
time and the Weert potential for the boundary part of the Liénard-Wiechert electromagnetic field.
The gravity via the equivalence principle has also been a burning topic among all Physicists and
Mathematicians, as such kind of conception leads to relative acceleration between local Lorentz
frames at different regions. In other sense, space-time is curved and there is no global inertial frame
for the distinguished study of G.R. Now, the dynamical manifold being curved, there should be some
technique to determine the source of curvature for this . Of course, the matter and non-gravitational
energy (in the form of energy-momentum tensor) can be used to meet the purpose. Further, for our
dynamical manifold the energy-momentus tensor can be evaluated via famous Einstein equations.
To develop such an Einstein’s equation, the Mach’s principle is customarily used, which states that
the definition of inertial frames being dependent on the matter-energy content of the universe. Thus
according the Mach’s principle, the Einstein’s equations are;

Tij = Gij , (1.1)

or including the cosmological constant Λ, equation (1.1) produces;

Tij = Gij + Λgij , (1.2)

where Tij is the energy-momentum tensor and Gij is the Einstein’s tensor constructed merely from
metric tensor and its derivatives as;

Gij = Rij −
R

2
gij . (1.3)

gij is the metric tensor which gives a measure of distance, Rij is the contracted curvature or Ricci
curvature and is derived from the Riemannian curvatureRhijk going through usual contraction process.
Also, the Riemannian tensor is constructed from the metric compatible, torsion free connection
coefficients Γijk and these connections are often called Levi-Civita connection coefficients, or sometimes
the Christoffel’s three index symbols [Kreyszig (1991)]. The metric compatible connection defines
the parallel transport of vectors such that their metric products (norm and angle) are preserved.
Moreover, the Riemannian tensor measures the non-commutativity of the associated covariant derivative.
The symbol R = Rii is the Ricci scalar.
Now, the Einstein’s equations with cosmological constant obey three very important principles [Zanelli
(2001-02)]:
(a). They are independent of reference frame determined by choice of co-ordinates.
(b). There is well defined Cauchy problem for the evolution of the metric tensor [Wald (1984)].
(c). In the non-relativistic case, they reduce to Newtonian Gravity in weak field.
Here the condition (a) is naturally satisfied because of Einstein’s equations composed of tensorial
quantities. Condition (b) implies that the Cauchy’s conditions are necessary and sufficient to integrate
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vacuum Einstein’s equations specifying the field and its first derivatives on an initial Cauchy surface.
The Cauchy’s conditions can be done by means of Hamiltonian formulation which evolves the field
(gravitational or electromagnetic) with respect to time. The form of Einstein’s tensor ensures that the
metric has a well defined Cauchy problem and therefore, the whole Einstein’s equations have such a
well defined initial value problem , which depend on the matter content. Eventually, the condition (c)
is exactly in accordance with the measurement from everyday physics to celestial mechanics that all
non-relativistic, classical weak gravity systems obey Newtonian physics.

In case, if one insists that the dynamical structured cosmos has a vacuum solution, then one
should eliminate the cosmological term or assume it very very small. Also, Einstein’s tensor bears
some significant features which assign it very suitability to generalize field equations for dynamical
manifold. These features are:
(I). Symmetry. (II). Covariantly conserved, i.e., ∇jGik = 0. (III). Depending only on metric, its first and
second derivatives. (IV). Linear in second derivative of the metric.
The importance of features (I) and (II) is apparent since an energy-momentum tensor comes from the
variation of a matter Lagrangian with respect to the metric, is both symmetric and divergence free.
The action which produces the Einstein’s field equations is known as Einstein-Hilbert action defined
as:

S =

∫
M

√
(g)R.d4x, (1.4)

where dv =
√

(g)dx0dx1dx2dx3 =
√

(g)d4x defines the elementary four dimensional volume of
dynamical manifold and g ≡ det gij .
Moreover, the feature (II), the contracted Bianchi’s identity gives the local conservation of energy-
momentum. The features (III) and (IV) are significant for the physical conditions (b) and (c).

We, now, proceed to outline some more basic but complicated formalism regarding theory of
gravitation including the most desiring Lovelock gravity.

1.1 Gravitational Field Theory from Lovelock Perspective
The theory of gravitational field based on Lagrangian quadratic in the curvature tensor has been
introduced by Eddington (1975), Weyl (1918), Weyl (1919), Weyl (1918-21) and Weyl (1921). Perhaps,
a Mathematical inspiration to examine gravitational theories fabricated on non-linear Lagrangian has
been the phenomenological aspect of Einstein’s theory. This means that there is a direct dependence
of Einstein’s tensor and Lagrangian on the derivatives of metric [Farhoudi (1995)]. Recently, it has
been well known to us that the Einstein’s gravity, which when treated under fundamental quantum
gravity, leads to a non-renormalizable theory. Therefore, in order to permit renormalization of the
divergence, the quantum gravity indicates that the Einstein’s-Hilbert action should be extended by
the insertion of higher order gravity terms [Utiyama and DeWitt (1962)]. Moreover, certain theories
of gravity with curvature tensor squared terms have been suggested to render gravity renormalizable
in four dimensions and in fact it has been shown [Birrell and Davies (1982), Buchbinder et al. (1992)]
that the Lagrangian ;

L =
1

k2
(
R+ αR2 + βRµνR

µν) , (1.5)

which due to Gauss Bonnet theorem, is the most general quadratic Lagrangian upto four dimensions
used to solve renormalizable problems. Here α, β and k2 ≡ 16πG

c4
are constants.

The above Lagrangian is multiplicatively renormalizable [Stelle (1977)] and asymptotically free [Fradkin
and Tseytalin (1982)]; however, it will not be unitary in the sense of scalar product or norm invariance.
It is also discussed by Farhoudi (2009) that actually the above Lagrangian within usual perturbation
theory has a particle spectrum containing a further massive scalar spin two ghost which has either
negative energy or a negative norm and the existence of negative excitations in a relativistic model
leads to causality violation [Stelle (1978)].
This is the main reason that lack of unitarity removes the possibility of higher order gravity inclusion in
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the above Lagrangian. Further, Zwiebach (1985) and Zumino (1986) have shown that the quadratic
Lagrangian by means of dimensionally continued Gauss-Bonnet densities must have the form of
Lovelock Lagrangian [Lovelock (1973), Lovelock (1972), Briggs (1998)] as;

£ =
1

k2

∑
0<n<D

2

1

2n
cnδ

α1···α2n
β1···β2n R

β1β2
α1α2

· · ·Rβ2n−1β2n
α2n−1α2n ≡

∑
0<n<D

2

cnL
(n), (1.6)

where c1 ≡ 1 is set and other constants cn are taken to be of the order of Plank’s length to the
power 2(n − 1) for the dimension of £ to be same as L(1). Also, the symbol δα1···αp

β1···βp is the totally
antisymmetric Kronecker delta, which is identically zero if p > D and the supremum value of p is
concerned to the dimension D of structured cosmos having conformal configurations and is defined
by;

nsup =

{
D
2
− 1, even D

D−1
2
, odd D

. (1.7)

Now, this above ghost free feature including the fact that the Lovelock Lagrangian in the most general
second order Lagrangian which is same as the Einstein-Hilbert Lagrangian that produces the field
equation as second order equation and such a feature stimulates importance of Lovelock gravity and
its significance in the literature of theory of relativity [Farhoudi (2006), Nojiri and Odintsov (2007)].
Moreover, the Lovelock Lagrangian evidently reduces to Einstein-Hilbert Lagrangian and its second
term is the Gauss-Bonnet’s invariant given by;

L(2) =
1

k2

(
R2 − 4RµνR

µν +RαβµνR
αβµν

)
. (1.8)

Lovelock (1973) and Briggs (1998) have also discussed that each term of the Lovelock tensor Gαβ ,
where

Gαβ = −
∑

0<n<D
2

1

2n+1
cngαµδ

µα1···α2n
ββ1···β2n R

β1β2
α1α2

· · ·Rβ2n−1β2n
α2n−1α2n ≡

∑
0<n<D

2

cnG
(n)
αβ , (1.9)

has some remarkable features. That is to say, each term of G(n)
αβ can be re-written in the form of

Einstein’s tensor with respect to Ricci and scalar curvature tensor as follows:

G
(n)
αβ = R

(n)
αβ −

1

2
gαβR

(n), (1.10)

here the Lovelock Lagrangian configurations, i.e., R(n)
αβ and R(n) are defined as;

R
(n)
αβ ≡

n

2n
δα1α2···α2n
αβ2···β2n Rβ2α1α2β

Rβ3β4α3α4
· · ·Rβ2n−1β2n

α2n−1α2n (1.11)

and
R(n) ≡ 1

2n
δα1α2···α2n
β1β2···β2n R

β1β2
α1α2

· · ·Rβ2n−1β2n
α2n−1α2n . (1.12)

Also, from these equations, one can easily observe that R(1)
αβ ≡ Rαβ and R(1) ≡ R.

The Euler-Lagrangian configurations, i.e., R(1)
αβ andR(1) can be obtained easily by using definition

of generalized Kronecker delta and the properties of Riemannian-Christoffel’s tensor. Farhoudi (2009)
has also delineated an alternative and very basic technique to notice that under the process of varying
Einstein-Hilbert action; δ

∫
L(n)

√
(−g) dDx along with its Euler-Lagrangian expression;

δL(n)

δgαβ
− 1

2
gαβL

(n) ≡ 1

k2
G

(n)
αβ , (1.13)

the relations (6), (11) and (12) produce

δL(n)

δgαβ
=

1

k2
R

(n)
αβ and L(n) =

1

k2
R(n). (1.14)
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The above expression is very much straightforward but there exists a relation between R(n)
αβ and R(n)

analogous to that which exists between Ricci tensor and scalar curvature tensor; namely

1

n
trace R

(n)
αβ = R(n), (1.15)

here the ”trace” stands for usual contraction of any two indices of the corresponding tensorial quantity,
for instance, trace Aµν ≡ gαβAαβ .
Thereby, from the above detail, one can conclude that the splitting or decomposing feature of Einstein’s
tensor, as a first terms of Lovelock tensor into two parts with the aforementioned trace relation
between them is a common feature of any other part of Lovelock tensor, in which each term is merely
a homogeneous Lagrangian. Now, it is also a point to be taken under trial that from the standpoint
of principle of invariance, what might happen with Lagrangian? Usually, its relevant Euler-Lagrangian
expression becomes inhomogeneous tensor as for instance, the entire Lovelock Lagrangian £, which
is compound of terms with a mixture of different orders.
Thus in case of inhomogeneity, the relevant Euler-Lagrangian can easily be mentioned by analogy
with the form of G(n)

αβ , for instance;

Gαβ = Rαβ −
1

2
gαβR,

where
Rαβ ≡

∑
0<n<D

2

cnR
(n)
αβ and R ≡ cnR(n). (1.16)

Farhoudi (2009) also discussed that a similar relation like (1.15) can not be setup for (1.16) due to
the involvement of the factor 1

n
. Hence to overcome this task, Farhoudi (2009) has introduced a new

avenue of generalized trace tool as an extra mathematical formulation for Riemannian framework.
This tool may slightly deform the original form of trace relation and modify it adequately, to enable
one to deal with difficulty of inhomogeneity. Here is the concise discussion of Farhoudi (2009) over
generalized trace technique.

1.2 Generalized Trace Technique for Inhomogeneous Lovelock Tensor

In the present section, Farhoudi (2009) attempted to delineate generalized trace used to solve the
difficulty in case of inhomogeneous Lovelock tensor, whose components are homogeneous functions
of the metric tensor and its derivatives.
To develop the generalized trace technique, Farhoudi (2009) has mentioned that either gµν or gµν

should be selected as a base for enumerating the homogeneity degree number. Further, he choose
the homogeneity degree number (here and hereafter abbreviated as ”HDN”) of gµν as [+1]; hence
the HDN of gµν as [−1] , since gµνgµα = δνα. Hence as the contravariant and covariant tensors are
transformed into each other in a 1−1 pattern by the metric, their HDNs are differed by [±2]. Similarly,
one can choose the HDN of gµν,α as [+1] and therefore the HDN of gµν,α will be [−1] and would be
calculated from gµν,α = −gµθgνβgθβ,α . Moreover, to identify the HDNs of higher order derivatives of
the metric, one may assume ∂α as of the HDN zero and thereby the HDN of ∂α = gαβ∂β will be [+1].
This all is due to elementary property of homogeneous function that the HDN of a term composed of
cross functions can be obtained by adding the HDNs of each of the cross functions. Farhoudi (2009)
has calculated the HNDs (say h) for some important homogeneous functions of the metric and its
derivatives. We, now, mention the generalized trace formula for a general (p, q) type tensor, e.g.,
A
α1α2···αp
β1β2···βq , which is a homogeneous function of degree h with respect to metric and its derivatives.

We shall consult table (1) of Farhoudi (2009) for HDNs and prefer to use notations as mentioned
by Farhoudi (2009)
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The generalized trace for such a homogeneous function has been defined by Farhoudi (2009) as:

Trace [h]A
α1α2···αp
β1β2···βq =

{
1

h− p
2
+ q

2
trace [h]A

α1α2···αp
β1β2···βq , when h− p

2
+ q

2
6= 0

trace [h]A
α1α2···αp
β1β2···βq , when h− p

2
+ q

2
= 0.

(1.17)

It is evident from the above relation that contravariant and covariant components of a tensor have
different HDNs , however the equality of traces is still retained, for instance;
Trace Amuν = Trace Aµν ≡ A, whatever be the HDNs of them, just like trace Amuν = trace Aµν ≡
Aαα. Then from (1.17), it follows that;

Trace [h]Aµν =

{
A = 1

h+1
Aαα, for h 6= −1

A = Aαα, for h = −1.
(1.18)

In practice, the generalized trace by definition has all properties of usual trace, for instance its
invariance under a similar transformation (i.e., for similar tensors), if the transformation doesn’t change
the HDNs of the tensor and its basis independence for linear operation in finite dimensional Hilbert
space. However, the trace operator can not act as a linear operator, when the coefficients of linearity
themselves are the homogeneous functions of degree h′ 6= 0. Using the definition of trace, for the
case when h′ 6= 0, we have, for instance

Trace
(
[h′]C [h]Aµν

)
=

1

h′ + h+ 1
trace

(
[h′]C [h]Aµν

)
, for h′ + h 6= −1

=
[h′]C

h′ + h+ 1
trace [h]Aµν .

Once more, using the definition of generalized space, we get

Trace
(
[h′]C [h]Aµν

)
=

{
h+1

h′+h+1

[h′]
C Trace [h]Aµν , for h 6= −1

1
h′

[h′]
C Trace [h]Aµν , for h = −1.

(1.19)

Besides this, we can write

Trace
(
[h′]C [h]Aµν

)
=

{
[h′]C trace [h]Aµν , for h′ + h = −1

(h+ 1)[h
′]C Trace[h]Aµν , for h 6= −1.

(1.20)

Because of the involvement of extra factor (h+1) in equation (1.20) and h+1
h′+h+1

in equation (1.19), the
Trace can not be assumed as a linear operator. However, these extra functions can be made equal
to one, only when h = −1 and h′ = +1, or when h = 0 and h′ = −1 in (1.19) and (1.20) respectively.
Farhoudi (2009) has mentioned that to define generalized trace for inhomogeneous function, one
should emphasize on the distributivity of usual trace, which can happen in the case when there are
either no coefficients of linearity, or when coefficients are included with their associated tensor, and
or when coefficients are assumed to be scalar with h′ = 0.
Here, for dealing with inhomogeneous Lagrangian, it can be shown that the definition of Trace also
has a link with Euler’s theorem for homogeneous functions. The Euler’s theorem for homogeneous
functions states that:

Theorem 1.1. ”if A(gµν) is a homogeneous scalar function of degree [h], i.e., A(λgµν) = λhA(gµν),
then gµν ∂A

∂gµν
= hA”. Where we formally define ∂A

∂gµν
≡ Aµν and Aµν is of degree [h − 1]. Also,

gµνAµν denotes its usual trace defined by A ≡ Trace Aµν .

Hence from Euler’s theorem, one is able to derive the trace of a tensor as;

trace [h−1]Aµν = h Trace Aµν ,
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or,

Trace [h−1]Aµν =
1

h
trace Aµν , when h 6= 0. (1.21)

Furthermore, under the generalized trace (1.17), one has

Trace [+1]gµν = trace gµν = D

and
Trace [−1]gµν = trace gµν = D.

Also, here is an example given by Lovelock (1971), when the definition of generalized trace is applied
to equation (1.11), an expression similar to equation (1.15) can be obtained including more analogous
form for each other, namely;

Trace R
(1)
αβ = R(1) = k2L(1)

Trace R
(2)
αβ = R(2) = k2L(2)

Trace R
(3)
αβ = R(3) = k2L(3)

...

Trace R
(n)
αβ = R(n) = k2L(n)


, (1.22)

where from equation (1.18), we evidently have

R(n) =
1

n
R(n)ρ
ρ (1.23)

It has been also delineated that in case of inhomogeneous Lovelock Lagrangian, under the efficiency
of generalized trace operator, the Lovelock tensor can be written as;

Gαβ = Rαβ −
1

2
gαβR. (1.24)

Moreover, by placing for R(n) from (1.12) and using (1.6), we get

£ =
1

k2
R. (1.25)

Also, by substituting it from (1.22) and using distributivity of Trace, we obtain

R = Trace Rαβ . (1.26)

Hence, in higher dimensional dynamical structured cosmos, the Lovelock tensor reduces to the
Einstein’s tensor in four dimensions. More precisely, in higher order gravities, where the geometry is
represented by the Lovelock tensor, the field equations can be written as;

G =
1

2
k2Tαβ . (1.27)

The Lovelock tensor, now can be classified as a generalized Einstein’s tensor and we evoke £,
Rαβ and R the generalized Einstein’s gravitational Lagrangian, the generalized Ricci tensor and
generalized curvature scalar, respectively.

2 Evolution of Lovelock Configurations Under Ricci Flow
Mechanism

Before evolving the foregoing Lovelock configurations under the Ricci flow mechanism, let us launch
a brief digest over Ricci flow mechanism.
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The Ricci flow (in abbreviated form ”R.F.”) is an evolution system on metrics and is a mean by which
one can take an arbitrary Riemannian manifold and smooth out geometry of that manifold to make it
look more symmetric. For a given metric as an initial data, its local existence and uniqueness on the
compact manifold was first established by Sir Hamilton. The R.F., which evolves a Riemannian metric
by its Ricci curvature, is a natural analogy of heat diffusion equation for metrics. As a consequence,
the curvature tensor evolved by a system of diffusion reaction equations which tend to distribute the
curvatures uniformly over the manifold. Hence, one expects that the initial metric be improved and
evolved into a more canonical metric, thereby leading to a better understanding of the Topology of the
underlying manifold.
Now, as it has already been mentioned that the Einstein’s theory of G.R. is recently attracting towards
a very surprising notion of ”dynamical manifold”. Therefore to reform our pursuance concerning
evolution of Lovelock configurations of such a dynamical structured cosmos, we outline some appropriate
R.F. techniques which would cooperate us to disclose few more mysteries of space-time.
We assume that our Einstein manifold EM bears all the features of dynamical structured manifold,
i.e., all the Einstein’s geometric configurations have varying nature and thus obviously have the
dependence upon time factor. Moreover, under this assumption, naturally the Einstein’s metric gij
will depend upon time factor. Therfore, while applying R.F. mechanism for such a metric, one is
desperate to know, how the various other configurations evolve?
Suppose gij(t) is a time-dependent Einstein metric and

∂

∂t
gij(t) = hij(t), (2.1)

where hij is some symmetric 2-tensor.
Then under the above time evolving metric, the various geometric quantities evolve according to the
following expressions [Sheridan (2006)]:

∂

∂t
gij = −hij = −gikgjlhkl, (2.2)

where gij is th inverse of Einstein metric tensor.

Christoffel symbol:
∂

∂t
Γkij =

1

2
gkl(∇ihjl +∇jhil −∇lhij). (2.3)

Riemannian tensor:
∂

∂t
Rlijk =

1

2
glp[∇i∇jhkp+∇i∇khjp−∇i∇phjk−∇j∇ihkp−∇j∇khip+∇j∇phik].

(2.4)

Ricci tensor:
∂

∂t
Rij =

1

2
gpq(∇q∇ihjp +∇q∇jhip −∇q∇phij −∇i∇jhqp). (2.5)

Scalar tensor:
∂

∂t
R = −4H +∇p∇qhpq − hpqRpq, (2.6)

where 4 = ∇p∇p is the Laplacian and H = gpqhpq.

Volume element:
∂

∂t
dµ =

H

2
dµ, (2.7)

where dµ =
√

(detgij)dx1 ∧ dx2 ∧ · · · ∧ dxn.

Volume of Einstein manifold:
d

dt

∫
EM

dµ =

∫
EM

H

2
dµ. (2.8)

Total curvature scalar on a closed EM:
d

dt

∫
EM

Rdµ =

∫
EM

(
1

2
RH − hijRij)dµ. (2.9)

Besides the above non-linear time dependent heat diffusion expressions, we delineate some more
typical time dependent non-linear heat diffusion expressions, which significantly participate in the
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Lovelock theory of gravity.
For any time dependent tensor α ∈ EM , there holds

∂

∂t
(trace α) = − < h,α > +trace

∂α

∂t
, (2.10)

where the symbol <,> stands for the inner product.
The Ricci tensor, under the concept of divergence and Lichnerowicz Laplacian evolves as;

∂

∂t
Ric = −1

2
4Lh−

1

2
Łδ∗(G(h)). (2.11)

Here, δ∗ is the divergence operator such that δ∗ : EM → EMhypersurface and for various T it is
defined as δ∗(T ) = −trace12∇T . Again, δ∗(T ) = −trace12∇T means the trace taken over first
and second entries. The symbol Ł used in equation (2.11) stands for the Perelman’s length. The
symbol 4L is the Lichnerowicz Laplacian and will be defined later. Also, in the present study, we
have assumed an Einstein’s metric g(t) depending upon the time factor such that t ∈ [0, T ].
Moreover, some various t ∈ [0, T ] ∈ EM , we have the following useful identities:

The Gravitational tensor : G(T ) = T − 1

2
(trace T )g. (2.12)

Tanking the divergence of (2.12), we have,

δ∗G(T ) = δ∗T +
1

2
d(trace T ). (2.13)

In view of equation (2.13), we have an important identity;

δ∗G(Ric) = δ∗ Ric +
1

2
dR = 0. (2.14)

We now describe the Lichnerowicz Laplacian involved in equation (2.11). This operator in global
co-ordinate system is given as;

(4Lh)(X,W ) = (4h)(X,W )+h(X,Ric(W ))−h(W,Ric(W ))−h(W, (Ric(X)))+2trace h(R(X, .)W, .),
(2.15)

while the same operator in local coordinate system yields;

(4Lh)ij = 4hij + 2Rkijlhkl −Rikhkj −Rjkhki. (2.16)

Besides, if one prompts himself to go through the linearized Ricci flow system, then one needs to think
about a solution of linearized R.F. system composed of a complete solution (EM4, g0(t)), t ∈ [0, T ],
to the R.F. :

∂

∂t
gij = −2Rij (2.17)

coupled with a solution h(t), t ∈ [0, T ], to Lichnerowicz Laplacian heat diffusion equation:

∂

∂t
hij = (4Lh)ij . (2.18)

Once again, if we write α = αijdx
i ⊗ dxj and taking care of equations (2.1) and (2.2), we have;

∂

∂t
(trace α) =

∂

∂t

(
gijαij

)
= −hijαij + gij

∂

∂t
αij =< h,α > +trace

∂α

∂t
. (2.19)

From which, we can have an expression of the form:

∂R

∂t
≡ ∂

∂t
(trace Ric) = − < h, Ric > +trace (

∂

∂t
Ric). (2.20)
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Now, as the higher dimensional Lovelock theory of gravity is an interesting generalization of Einstein’s
G.R. theory. Therefore, from the standpoint of very crucial fact that space-time is a dynamical
manifold, we draw our focus towards the evolution of Lovelock configurations under the aforementioned
R.F. mechanism.
By evolving the Lovelock configurations, we shall try to produce some useful non-linear heat diffusion
equations, which would be very much helpful in knowing the varying nature of the underlying dynamical
manifold EM .
Let us first evolve the Einstein’s equation following the well known Mach’s principle under suitable
R.F. mechanism discussed in equations (2.1) to (2.20). Suppose the energy momentum tensor Tij is
the time dependent configuration of EM -manifold, such that;

Tij(t) = Gij(t) + Λgij(t), ∀t ∈ [0, T ]. (2.21)

Applying R.F. on both side of equation (2.21), it follows that

∂

∂t
Tij(t) =

∂

∂t
[Gij(t) + Λgih(t)], (2.22)

where Gij(t) is the time dependent Einstein’s tensor given by equation (1.3).
After some straightforward and simple calculations, equation (2.22) yields,

∂

∂t
Tij(t) =

1

2
gpq(∇q∇ihjp +∇q∇jhip −∇q∇phij −∇i∇jhqp)+

+
1

2
gij(4H −∇p∇qhpq + hpqRpq)−

R

2
hij + Λhij . (2.23)

In addition to warm up the Lovelock literature, we actually started with a very simple Einstein-Hilbert
action (1.4), which in generalized form is rewritten as;

S =
1

16πG

∫
dx4
√
−g(R− 2Λ + αR2),

or, in more concise form written as

S =
1

16πG

∫
EM

dµ(R− 2Λ + αR2). (2.24)

The equation (2.24) corresponds to Einstein-Hilbert action in four dimensions augmented with the
square of curvature scalar, where α is a coupling constant with dimensions of [α] = length2. This
action is a particular case of the so called f(R)-gravity theories which are defined by adding to the
Einstein-Hilbert Lagrangian a function of the Ricci scalar f(R). But the theory defined by equation
(2.24) is not the only theory of gravity that admits Schwarzchild metric as a persistent solution.
Actually, this is a rather common feature of theories with higher curvature terms. Besides this, we
can consider another action that introduces Einstein’s gravity coupled to conformally invariant gravity,
namely

S =
1

16πG

∫
EM

dµ(R− 2Λ + c WαβθψW
αβθψ), (2.25)

where c is a coupling constant andWαβθψ is the Weyl tensor, whose quadratic contraction is delineated
as;

WαβθψW
αβθψ =

1

3
R2 − 2RαβR

αβ +RαβθψR
αβθψ. (2.26)

We, now, compute the non-linear heat diffusion equation for the Einstein-Hilbert actions (2.24) and
(2.26) under the suitable R.F. techniques as follows:
Applying the R.F. on both side of action (2.24) and taking care of equations (2.6) and (2.9), we have

∂S

∂t
=

1

16πG

d

dt

∫
EM

Rdµ− Λ

8πG

d

dt

∫
EM

dµ+
α

16πG

d

dt

∫
EM

R2.dµ.

10
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The above expression after some manipulation turns out to be a required non-linear heat equation
as;

∂S

∂t
=

1

16πG

∫
EM

(
1

2
RH − hijRij)dµ−

Λ

8πG

∫
EM

H

2
dµ+

+
α

16πG

∫
EM

[(−4H +∇p∇qhpq − hpqRpq) + (
1

2
RH − hijRij)]R.dµ. (2.27)

Further, to evolve Einstein field equations, applying R.F. mechanism to Einstein-Hilbert action (2.25),
we have

∂S

∂t
=

1

16πG

d

dt

∫
EM

Rdµ− Λ

8πG

d

dt

∫
EM

dµ+
c

48πG

∫
EM

R2dµ− c

8πG

d

dt

∫
EM

(RαβR
αβdµ)+

+
c

16πG

d

dt

∫
EM

(RαβθψR
αβθψdµ).

Manipulating the above expression by employing equations (2.4), (2.5), (2.6), (2.8) and (2.9), we have
after some lengthy but straightforward computations;

∂S

∂t
=

1

16πG

∫
EM

(
1

2
RH − hijRij)dµ−

Λ

8πG

∫
EM

H

2
dµ+

c

48πG

∫
EM

[(−4H+

∇p∇qhpq − hpqRpq) + +(
1

2
RH − hijRij)]R.dµ−

c

8πG

∫
EM

[Rαβ{dµ(
1

2
gpq(∇q∇αhβp+

∇q∇βhαp −∇q∇phαβhpq)) + +Rαβ
H

2
dµ}+Rαβdµ× 1

2
gpq(∇q∇ihjp +∇q∇jhip −∇i∇jhqp)]+

c

16πG

∫
EM

[Rαβθψ{dµ
1

2
gαp(∇θ∇ψhβp + +∇ψ∇βhθp −∇ψ∇phβθ−

∇ψ∇θhβp −∇θ∇βhψp +∇θ∇phβψ)}+Rαβθψdµ× 1

2
(∇α∇βhθψ +∇α∇θhβψ−

−∇α∇ψhβθ −∇β∇αhθψ −∇β∇θhαψ +∇β∇ψhαθ)]. (2.28)

Now, as in subsection (1.1), we have discussed the gravitational field theory from Lovelock perspective
and observed that the non-linear Lagrangian has been a crucial aspect of Einstein’s theory. Thus,
having the dependence of Einstein’s tensor and Lagrangian on the derivatives of metric, we evolve
the most general quadratic Lagrangian (1.5) so that it could evoke about the gravitational waves for
dynamical manifold EM when treated under R.F. mechanism.
Taking R.F. of (1.5) and evolving under appropriate R.F. techniques, after some careful computations,
we have

∂L

∂t
=

1

k2
[
∂

∂t
R+ α

∂

∂t
R2 + β

∂

∂t
(RµνR

µν)] =
1

k2
[(−4H +∇ν∇µhνµ − hνµRνµ)+

+ 2αR(−4H +∇ν∇µhνµ − hνµRνµ) + β(
1

2
Rµνg

pq{∇q∇µhνp +∇q∇νhµp −∇q∇phµνhpq}+

+
1

2
Rµνgpq{∇q∇µhνp +∇q∇νhµp −∇q∇phµν −∇µ∇νhpq})]. (2.29)

Also, the ghost free feature of Lovelock Lagrangian stimulates that this kind of configuration is the
Einstein-Hilbert Lagrangian of second order (1.8), that produces the field equation. Thereby, the heat
equation for such configuration in the dynamical manifold in terms of Gauss-Bonnet’s densities is

11
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given by the following expression;

∂

∂t
L(2) =

1

k2
[2R(−4H+∇ν∇µhµν−hµνRµν)−4{1

2
Rµνg

pq(∇q∇µhνp+∇q∇νhµp−∇q∇phµνhpq)+

+
1

2
Rµνgpq(∇q∇muhνp+∇q∇nuhµp−∇q∇phµν−∇µ∇νhpq)}+Rαβµν{

1

2
gαp(∇µ∇νhβp+∇ν∇βhµp−

−∇ν∇phβµ −∇ν∇µhβp −∇µ∇βhνp +∇µ∇phβν)}+Rαβµν(∇α∇βhµν +∇α∇µhβν −∇α∇νhβµ−
∇β∇αhµν −−∇β∇muhαν +∇β∇νhαµ)]. (2.30)

The special class of higher curvature theories, called the Lovelock gravity are the most general
second order gravity theories in higher dimensional space-time. In fact, the higher dimensional
space-times are of extreme interest in several candidate frameworks for unifying gravity with other
interactions and furthermore, with the Lovelock theories, one can explore the effect of higher curvature
terms in black hole thermodynamics without having any concern with complications that arise in true
higher derivative theories. Here, we attempt to evolve such a Lovelock theory of higher dimensional
dynamical manifold EM under the R.F. mechanism. We, first rewrite the Lovelock Lagrangian (1.6)
in more concise form as below:

£ =
1

k2

∑
0<n<D

2

1

2n

2n∏
r=1

δαrβr R
βr
αr ≡

∑
0<n<D

2

cnL
(n). (2.31)

Taking the R.F. on both side of equation (2.31), and simplifying under the suitable R.F. techniques
described previously, we have

∂£

∂t
≡ ∂

∂t

 ∑
0<n<D

2

cnL
(n)

 =
1

k2

∑
0<n<D

2

1

2n

2n∏
r=1

[gαrµr (gµrβr
∂

∂t
Rβrαr +Rβrαr

∂

∂t
gµrβr ) + gµrβr×

Rβrαr
∂

∂t
gαrµr ] =

1

k2

∑
0<n<D

2

1

2n

2n∏
r=1

[gαrµr (gµrβr
gprqr

2
{∇qr∇αrh

βr
pr +∇qr∇

βrhαrpr −∇qr∇prh
βr
αr−

−∇αr∇
βrhqrpr}+Rβrαrhµrβr ) + gµrβrR

βr
αrg

αrlrhlrmrg
µrmr ]. (2.32)

From the standpoint of present study, it is evident that the Lovelock tensor (1.9) is nothing but
the composition of Ricci and curvature scalar tensors recognized by equations (1.11) and (1.12)
respectively. Thus to evolve a non-linear Lovelock heat diffusion equation, we first develop the non-
linear heat diffusion equations for the identities (1.11) and (1.12) as follows:
Applying R.F. mechanism for identity (1.11), we have

∂

∂t
R

(n)
αβ =

∂

∂t

[
n

2n

2n∏
r=1

gαβδ
αr
βr
Rβrαr

]
=

n

2n

2n∏
r=1

[gαβ{gαrµr (gµrβr
∂

∂t
Rβrαr +Rβrαr

∂

∂t
gµrβr )+

+gµrβrR
βr
αr

∂

∂t
gαrµr}+δαrβr R

βr
αr

∂

∂t
gαβ ] =

n

2n

2n∏
r=1

[gαβ{gαrµrgµrβr
gprqr

2
(∇qr∇αrh

βr
pr +∇qr∇

βrhαrpr−

−∇qr∇prh
βr
αr −∇αr∇

βrhqrpr ) + gαrµrRβrαrhµrβr + gµrβrR
βr
αrg

αrlrhlrmrg
µrmr}+ δαrβr R

βr
αrhαβ ].

(2.33)

12
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Likewise, applying appropriate R.F. evolution techniques to equation (1.12), so that we could have

∂

∂t
R(n) =

1

2n

2n∏
r=1

∂

∂t

(
δαrβr R

βr
αr

)
=

1

2n

2n∏
r=1

[gαrµr (gµrβr
∂

∂t
Rβrαr +Rβrαr

∂

∂t
gµrβr ) + gµrβrR

βr
αr

∂

∂t
gαrµr ]

=
1

2n

2n∏
r=1

[gαrµrgµrβr
gprqr

2
(∇qr∇αrh

βr
pr +∇qr∇

βrhαrpr −∇qr∇prh
βr
αr −∇αr∇

βrhqrpr )+

+ gαrµrRβrαrhµrβr + gµrβrR
betar
αr gαrlrhlrmrg

µrmr ]. (2.34)

Eventually, in viwe of flow expressions (2.33), (2.34) and (1.10), we have the following Lovelock heat
diffusion equation;

∂

∂t
Gαβ =

∑
0<n<D

s

cn
∂

∂t
G

(n)
αβ =

∑
0<n<D

2

cn
n

2n

2n∏
r=1

[gαβ{gαrµrgµrβr
gprqr

2
(∇qr∇αrh

βr
pr+

∇qr∇
βrhαrpr −−∇qr∇prh

βr
αr −∇αr∇

βrhqrpr ) + gαrµrRβrαrhµrβr + gµrβrR
βr
αrg

αrlrhlrmrg
µrmr}

+δαrβr R
βr
αrhαβ ]−−

∑
0<n<D

2

cn
1

2n+1
gαβ

2n∏
r=1

[gαrµrgµrβr
gprqr

2
(∇qr∇αrh

βr
pr+∇qr∇

βrhαrpr−∇qr∇prh
βr
αr−

∇αr∇
βrhqrpr ) + +gαrµrRβrαrhµrβr + gµrβrR

betar
αr gαrlrhlrmrg

µrmr ]. (2.35)

Concluding Remarks
Here is the brief discussion over some main outcomes of this article written in favor of evolution of
Lovelock tensor as a generalized Einstein’s tensor and Lovelock gravity under R.F. mechanism:

a In the section (1) A brief digest on the historical evolution of Lovelock theory including a very
surprising concept of dynamical manifold has been carried out.

b In the subsection (1.1), we have studied the gravitational field theory based on most general
quadratic Lagrangians. In addition, we have gone through the Lovelock Lagrangian and the
Lovelock tensor and their significance in the study of gravity theory of dynamical manifold.

c In subsection (1.2), we have pursued generalized trace techniques of Farhoudi (2009) which are
very useful to solve the difficulty in case of inhomogeneous Lovelock tensor.

d Section (2) has been the most crucial part of our research. In this section, we have attempted
to describe the dynamical manifold EM , from a new perspective called R.F. mechanism.
Various time evolving metrics have been discussed and under these time evolving techniques,
we have evolved Einstein’s equations following Mach’s principle. Besides, by employing the
time evolving R.F. mechanism, a non-linear heat diffusion equation for Einstein-Hilbert action
has been established. Further, an action involving Einstein’s gravity coupled with conformally
invariant gravity has also been evolved under R.F. techniques. Afterward, a R.F. expression for
the Lovelock Lagrangian has been setup. Finally, the Ricci tensorR(n)

αβ and the curvature scalar
R(n) have been treated under appropriate R.F. mechanism so that their diffusion equation
could be employed to evolve the diffusion equation of Lovelock tensor as a diffusion equation
of generalized Einstein tensor.
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