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Abstract

The technical details of RSA works on the idea that it is easy to generate the modulus by multiplying two
sufficiently large prime numbers together, but factorizing that number back into the original prime numbers
is extremely difficult. Suppose that N = prqs are RSA modulus, where p and q are product of two large
unknown of unbalance primes for 2 ≤ s < r. The paper proves that using an approximation of φ(N) ≈
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which leads to the factorization of the moduli N = prqs into unbalance prime factors p and q in polynomial
time. The second part of this reseach report further, how to generalized two system of equations of the form
eux

2 − y2uφ(Nu) = zu and eux
2
u − y2φ(Nu) = zu using simultaneous Diophantine approximation method and

LLL algorithm to find the values of the unknown integers x, yu, φ(Nu) and xu, y, φ(Nu) respectively, which
yeild to successful factorization of k moduli Nu = pruq

s
u for u = 1, 2, · · · k in polynomial time.

Keywords: Factorization; LLL algorithm; diophantine approximations; unbalance prime; continued fraction.

1 Introduction

The use of public-key cryptography differs dramatically from previous methods. All cryptographic systems have
relied on the fundamental tools of substitution and permutation up to the present day [1],[2]. However, in
contrast to typical single-key encryption, public-key algorithms are based on mathematical functions and are
asymmetric in nature, requiring the usage of two keys. Several myths concerning public keys exist:

1. That public key encryption is more resistant to cryptanalysis than other types of encryption. In truth,
the security of any system is determined by the length of the key and the computational labor required
to crack the encryption [3],[4].

2. Single key encryption has been replaced with public key encryption. Due to the additional processing
power required, this is improbable.

3. This is incorrect: key management is straightforward with public key cryptography[5].

A one-way function is a function that maps a domain into a range and has a unique inverse for each function
value, with the constraint that the function is easy to calculate but the inverse is impossible:

Y = f(x) easy

X = f−1Y infeasible

A problem is described as ”easy” if it can be solved in polynomial time as a function of input length (n). For
instance, the computation time is proportional to na, where a is a constant. However, the term ”infeasible” is
not properly defined. In general, if the effort to solve the problem is larger than polynomial time, the problem
is infeasible, for example, if the time to compute is proportional to 2n.
Trapdoor one-way functions are a family of invertible functions fk such that Y = fk(X) is easy if k and X
known, X = fk(Y ) is easy if k and Y are known, and X = f−1

k (Y ) is infeasible if Y is known but k is not known.

The discovery of an appropriate trapdoor one-way function is required for the construction of a workable public-
key scheme.

The integer factorization problem was used to secure the RSA modulus N = pq where p and q are positive
big prime numbers of equal bit length. The key equation is ed − kφ(N) = 1 where (e,N) and (d, k, φ(N), p, q)
represent public and private keys, respectively. The key generation, encryption, and decryption methods in the
RSA cryptosystem are detailed in [6]. Many factoring modulus N = pq attacks can be found in [7], [8], [9], [10],
[11], [12] among others. [13] was the first to report an RSA version for r ≥ 2 that used the multi prime power
modulus N = prq. Takagi claims to have proved that his method encrypted data faster than the traditional RSA
modulus N = pq. Since then, numerous attacks on the moduli N = prq for rgeq2 have been documented, using
a variety of tactics detailed in [14], [15], [16] and [17]. Prime moduli N = prqs is one of the RSA cryptosystem
variants that has been found to have higher decryption efficiency than regular RSA modulus N = pq, according
to [18], [19]. Using complicated mathematics and logic, the cryptosystem enables secrecy and authenticity in
digital communication channels. The integer factorization problem contains the cryptosystem’s security. The
prime power moduli go through the same key generation, encryption, and decryption operations as the normal
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RSA cryptosystem, with the exception that the decryption phase is faster.

Lim (2000) described a cryptanalysis attack on prime power moduli N = prqs, using Takagi’s approach to
discover prime factors (p, q) when gcd(r, s) = 1. They demonstrated that their technique decrypted data 15-
times faster than the usual RSA cryptosystem, according to [19]. Lu (2015) published another partial key

exposure attack on the moduli N = prqs where gcd(r, s) = 1, demonstrating that min
(

l
r+l

, 2(r−l)
r+l

)
fraction of

least significant bit(s) (LSBs) or most significant bit(s)(MSBs) of p is necessary to factor N in polynomial time
[20].

Theorem 1.1. Let x ∈ R and p
q

be a rational fraction such that gcd(p, q) = 1 and q < b if x = a
b

with
gcd(a, b) = 1. If ∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
,

then p
q

is count among the convergent of the continued fraction expansion of x.

Theorem 1.2. (Simultaneous Diophantine Approximations) For given rational numbers of the type ω1, ..., ωn
and 0 < ε < 1, there is a polynomial-time procedure to compute integers p1, ..., pn and a positive integer q such
that

max
i
|qωi − pi| < ε and q ≤ 2

n(n−3)
4 [15].

2 Factoring N = prqs By Applying The Continued Fraction
Method

In this section, we present results using continued fractions to factor multi prime power modulus N = prqs with
2 ≤ s < r for some unknown parameters (φ(N), x, y, p, q) using one of the appropriate approximation of φ(N)

given as φ(N) ≈ N−N
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ex2 − y2φ(N) = z.
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q < p < λq and qs < pr < λqs, then
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Proof. Assume that N = prqs, q < p < λq and qs < pr < λqs for 2 ≤ s < r with λ > 2, after that, multiplied

by pr yield prqs < p2r < λprqs which implies N < p2r < λN , hence N
1
2r < p < λ

1
2rN

1
2r . Therefore, since

N = prqs, then qs = N
pr

as a result of which λ− 1
2sN

1
2s < q < N

1
2s . Since p and q are unbalance prime numbers,

for λ > 2, we have

λ− 1
2rN

1
2r < q < N

1
2r < p < λ

1
2rN

1
2r .

Also, using the modulus N = prqs then th eulers totian function φ(N) = pr−1qs−1(p− 1)(q − 1), allawed us to

yield an approximation of φ(N) using the primes p ≈ N
1
2r and q ≈ λ−−1

2r N
1
2r as follows:

φ(N) = pr−1qs−1(pq − (p+ q) + 1)

= prqs − (prqs−1 + pr−1qs) + pr−1qs−1

= N − (prqs−1 + pr−1qs) + pr−1qs−1.
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This completes the proof.

Theorem 2.1. Let N = prqs be a multi prime power modulus, where p and q are unbalance prime numbers
with q < p < λq and qs < pr < λqs and 2 ≤ s < r with λ > 2. Also, suppose that (e,N) and (x, p, q, φ(N))
are tuples of public and private keys, respectively, such that ex2 − y2φ(N) = z where 1 < e < φ(N) < N −
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, as a result of which N is factorized into unbalance

prime factors p and q in polynomial time.

Proof. Assume that N = prqs for 2 ≤ s < r be multi prime power modulus satisfying q < p < λq and

qs < pr < λqs,with z = N
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r
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Algorithm 1 : An ouline on how Theorem 2.1 works

1: Initialization: The public key pair (N, e) and µ satisfying Theorem 2.1.
2: Choose r, s, to be appropriate modest positive integers where 2 ≤ s < r.
3: for any (r, s) do

4: The convergents y2

x2
of the continued fractions expansion of

5: e
e(

N−N
r+s−1

2r

(
λ
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2r +λ
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)
+N

r+s−2
2r λ

1−s
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) .

6: end for
7: Compute φ(N) := ex2−z

y2

8: Compute G := gcd(φ(N), N)
9: Compute pr−2 := gcd(µ,G)

10: Compute qs := N
pr

11: return prime factors p and q.

Hence y2
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can be factored utilizing Diophantine Approximation and lattice basis reduction approaches at the same time.
for u = 1, ..., k and 2 ≤ s < r.

Theorem 2.2. Let Nu = pruq
s
u for u = 1, 2, . . . , k be the multi prime power moduli with unbalance prime factors

p and q such that q < p < ξq, qs < pr < λqs 2 ≤ s < r, λ > 2. Suppose that Yu = pr−2
u qs−2

u (pu − 1)(qu −
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and N = min{Ni}, with existance of the unknown

positive integers x, yi < Nα, define α = 2(ω)−(Λω)−2δω
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for 0 < Λ, δ < 1 satisfying the generalige equation

eux
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For the unknown integer positive integer x, we assume that ε =
(
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Using Theorem 1.2, we can obtained the unknown integers x and yu. This can be shown by looking at eux
2 −

y2uφ(Nu) = zu we get

φ(Nu) =
eux

2 − z
y2u

gcd(φ(Nu), Nu) = Ru

pr−2
u = gcd(Yu, Ru)

qsu =
Nu
pru

.

Finally, in polynomial time, the prime factors (pu, qu) of the prime power moduli Nu may be discovered
concurrently. for Nu for u = 1, . . . , k.
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Let

∆1 =
e1

N1 −G1 + λ
1−s
2r

1 N
r+s−2

2r
1

, ∆2 =
e2

N2 −G2 + λ
1−s
2r

2 N
r+s−2

2r
2

∆3 =
e3

N3 −G3 + λ
1−s
2r

3 N
r+s−2

2r
3

Algorithm 2 : An ouline on how Theorem 2.2 works

1: Initialization: The public key pair (Nu, eu) and Y2u satisfying Theorem 2.2.
2: Choose r, s, t ≥ 2, r > s and N = max{Nu} for u = 1, . . . , k.
3: for any (N,ω,Λ) do

4: ε :=
(
r+1
r

)
N3α+Λ

2
+δ−1 where α = 2(k)−(Λk)−2δk

2(1+3k)

5: ξ := [3k+1 × 2
(k+1)(k−4)

4 × ε−k−1] for k ≥ 2.
6: end for
7: Considering the L lattice spanned by the matrix T , as shown below.
8: The reduced basis matrix A is obtained using the LLL algorithm on L.
9: for any (T,A) do

10: L := T−1

11: S = LA.
12: end for
13: Recover x, yu from S
14: for each triplet (x, yu, eu) do

15: φ(Nu) :=
eux2−zu

y2u
16: Ru := gcd(φ(Nu), Nu)
17: pr−2

u := gcd(Y2u, Ru)
18: qsu := Nu

pru
19: end for
20: return the essential factors (pu, qu) back.

Example 2.3. We look at the three prime power moduli and their three public exponents.

N1 = 6874911618579656805630930162358750193483939735411761241763924238621

N2 = 1057223455152130639863520469642754020435834421033251045699872997

N3 = 571027477435873329018936776465149417766747906589423518381163537911

e1 = 2192671292466691965310854406083653008658098815577246813522634444273

e2 = 939495933919169375962742697129622498560733359703983195160914413

e3 = 270024722603295990753712468131199332235272856973239055160027243832

Let the following integers be known

Y21 = 49731699331894482340424179633912553279064

Y22 = 226786308539887749360745853036376059808

Y23 = 8780072321323534641793573970486243467484
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Then N = min(N1, N2, N3) = 6874911618579656805630930162358750193483939735411761241763924238621,

k = 3 with α = 2(k)−(Λk)−2δk
2(1+3k)

= 0.1050630000 and ε :=
(
r+1
r

)
N3α+Λ

2
+δ−1 = 0.006084582790. Using Theorem

1.1, we obtain

ξ = [3k+1 · 2
(k+1)(k−4)

4 · ε−k−1] = 29548252700

Consider the lattice L spanned by the matrix

T =


1 −[ξ∆1] −[ξ∆2] −[ξ∆3]

0 ξ 0 0

0 0 ξ 0

0 0 0 ξ


As a result, using the LLL algorithm to L, We get the decreased basis as shown below.

A =


25479047 26037627 17974538 25718111

52727986 −28856574 6093144, 20699382

2923909 20860269 69662086 −55628983

35984242 54428522 −51636432 −46473154


Next, we compute

S =


25479047 8126239 22641818 12048409

52727986 16816964 46856441 24933756

2923909 932546 2598316 1382644

35984242 11476746 31977203 17016055


Then, from the first row of matrix S we get x = 25479047, y1 = 8126239, y2 = 22641818, y3 = 12048409. Hence

using x and yu for u = 1, 2, 3, we compute Vu = eux
2−zu
y2u

= φ(Nu) = pr−1
u qs−1

u (pu − 1)(qu − 1)

V1 = 6874911618561746771006566386093552126548469304525378061406197697288

V2 = 1057223455141076159658000582332762180717394584938616409544282656

V3 = 571027477434683774706303994162285655507804572424909847321578032988

Algorithm 2 is used to produce Ru = gcd(φ(Nu), Nu) and pr−2
u = gcd(Yu, Ru), for i = 1, 2, 3

R1 = 49731699332024039854233937608758157063263

R2 = 226786308542259059556756004519734112321

R3 = 8780072321341825132720523804330520014423

p1 = 359748903791989

p2 = 48648211020653

p3 = 135001682080439

Finally, we compute qsu := Nu
pru

for u = 1, 2, 3, that is

q1 = 384268106903, q2 = 95825938969, q3 = 481747793063.

This results in polynomial time factorization of three moduli N1, N2, and N3.

Theorem 2.4. Let Nu = pruq
s
u for r, s > 2, r > s with 1 ≤ u ≤ k be k multi prime power moduli using

unbalance prime p and q such that q < p < λq for λ > 2 and Mu = pr−2
u qs−2

u (pu − 1)(qu − 1) be an integer that
is well-known, and (eu, Nu) are k public key exponents and (xu, pu, qu, φ(Nu)) be the corresponding private keys

tuples with ei < φ(Ni) <

(
Nu −N

r+s−1
2r

u

(
λ

1−s
2r
u + λ

−s
2r
u

)
+N

r+s−2
2r

u λ
1−s
2r
u

)
. Suppose that e = min{ei} = Nβ

and N = min{Ni} for 0 < β < 1. satisfying eux
2
u − y2(φ(Nu)) = zu . If there exist an unknown positive integer

y < Nα and k integer xu < Nα for all α = 2βk−Λk−2δk
2(1+3k)

, then prime factors pu and qu of k prime power moduli
Nu can be discovered in polynomial time for u = 1, · · · , k and 0 < Λ, δ < 1.
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Proof. Suppose Nu = pruq
s
u be k multi prime power moduli and N = max{Nu},e = min{eu} = Nβ , then

eux
2
u − y2φ(Nu) = zu can be rewritten as

eux
2
u − y2(pr−1

u qs−1
u (pu − 1)(qu − 1)) = zu

eux
2
u − y2

(
Nu −N

r+s−1
2r

u

(
λ

1−s
2r
u + λ

−s
2r
u

)
+N

r+s−2
2r

u λ
1−s
2r
u

)
= zu

eux
2
u − y2

(
Nu −G+G−

(
Nu − φ(Nu) +N

r+s−2
2r

u λ
1−s
2r
u

))
+N

r+s−2
2r

u λ
1−s
2r
u = zu

eux
2
u − y2

(
Nu −G+ λ

1−s
2r
u N

r+s−2
2r

u

)
= zu + y2

(
G−Nu + φ(Nu)−N

r+s−2
2r

u λ
1−s
2r
u

)
∣∣∣∣∣∣Nu −G+ λ

1−s
2r
u N

r+s−2
2r

u

eu
x2u − y2

∣∣∣∣∣∣ =

∣∣∣∣zu + y2
(
G−Nu + φ(Nu)−N

r+s−2
2r

u λ
1−s
2r
u

)∣∣∣∣
eu

.

Suppose N = min{Nu},and xu, y < Nα are positive numbers for u = 1, 2, . . . , k, e = min{eu} = Nβ for r, s > 0

with r > s and

∣∣∣∣zu + y2
(
G−Nu + φ(Nu)−N

r+s−2
2r

u λ
1−s
2r
u

)∣∣∣∣ < Nα+ 1
2
Λ for 0 < Λ < 1, zu < N

1
r
+α < Nδ

∣∣∣∣∣∣∣∣
zu + y2

(
G−Nu + φ(Nu)−N

r+s−2
2r

u λ
1−s
2r
u

)
ei

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
(
Nδ +N2αNα+ 1

2
Λ
)

Nβ

∣∣∣∣∣∣
<
N3α+Λ

2
+δ

Nβ

<
r

r + 1
N3α+Λ

2
+δ−β

This implies ∣∣∣∣∣∣Nu −G+ λ
1−s
2r
u N

r+s−2
2r

u

eu
x2u − y2

∣∣∣∣∣∣ < r

r + 1
N3α+Λ

2
+δ−β .

For the unknown integer positive integer x, we assume that ε = r
r+1

N3α+Λ
2
+δ−β , with α = 2βk−Λk−2δk

2(1+3k)
, then

Nαεk =

(
r

r + 1

)k
Nα+3αk+Λk

2
+δk−βk =

(
r

r + 1

)k
For

(
r
r+1

)k
< 2

k(k−3)
4 · 3k with k ≥ 2, we get Nαεk < 2

k(k−3)
4 · 3k. It follows that if y < Nα then y <

2
k(k−3)

4 · 3k · ε−k. Hence∣∣∣∣∣∣Nu −G+ λ
1−s
2r
u N

r+s−2
2r

u

eu
x2u − y2

∣∣∣∣∣∣ < ε, y < 2
k(k−3)

4 · 3k · ε−k.

We can get the unknown parameters x and yu using Theorem 1.2. This can be shown by looking eux
2
u−y2φ(Nu) =

zu we get

φ(Nu) =
eux

2
u − zu
y2

gcd(φ(Nu), Nu) = Hu

pr−2
i = gcd(Mu, Hu)

qsu =
Nu
pru

.
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Finally, for Nu, the prime factors (pu, qu) of the prime power moduli Nu may be discovered simultaneously in
polynomial time for u = 1, . . . , k.

Let

∆4 =
N1 −G+ λ

1−s
2r

1 N
r+s−2

2r
1

e1
, ∆2 =

N2 −G+ λ
1−s
2r

2 N
r+s−2

2r
2

e2

∆3 =
N3 −G+ λ

1−s
2r

3 N
r+s−2

2r
3

e3

Example 2.5. We look at the three prime power moduli and their three public exponents.

N1 = 227957490554836219276782263212054337340513383062762961302607876914923063841513044224927658449

N2 = 3554411814954353436327829133360230405934550757667338273784791207076143108174479058991431267

N3 = 12563684360130557914543205114177450582145868061677715240442851276342568213990275850644825303

e1 = 896431590348424420967637180409618642414768232176395991396543025638493663222263118811660329722

e2 = 2624887927496818747834988440396919183617252992024435142872231978744151847068826943513443976

e3 = 25458037772397631853474166271558261532396437778643313308829415967084500100595366231398196544

Also, let
M21 = 437251663490239253415769608634436908663832980943266100720

M22 = 49893967428453388210652454533128628445183121207383798000

M23 = 93129759478180871214268969283232195967071334480337255520

Then, one can observe that

N = min{N1, N2, N3} = 2624887927496818747834988440396919183617252992024435142872231978744151847068826943513443976

and min{e1, e2, e3} = Nβ with β = 0.9 and k = 3 we get ε = r
r+1

N3α+Λ
2
+δ−β = 0.01145936875 and α =

2βk−Λk−2δk
2(1+3k)

= 0.06016185000. Using Algorithm 3, we compute

ξ = [3k+1 · 2
(k+1)(k−4)

4 · ε−k−1] = 2348617238.

Consider the lattice L spanned by the matrix

C =


1 −[ξ∆1] −[ξ∆2] −[ξ∆3]

0 ξ 0 0

0 0 ξ 0

0 0 0 ξ


As a result, using the LLL algorithm to L, We get the decreased basis as shown below

T =


541467 −492004 −43415 −293812

−5530693 −9947612 4564085 5191518

−12248412 −711876 15126694 −22918192

−23106392 −13752150 −28045762 −15716484


Next, we compute

L =


541467 137692 733211 267217

−5530693 −1406424 −7489219 −2729428

−12248412 −3114702 −16585813 −6044660

−23106392 −5875825 −31288815 −11403134


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Algorithm 3 Theorem 2.4

1: Initialization: The public key tuple (Nu, eu) and Mu satisfying Theorem 2.4.
2: Choose r, s, t ≥ 2, r > s and N = max{Nu} for u = 1, . . . , k.
3: for any (N, k, Λ, β, δ) do

4: ε = r
r+1N

3α+Λ
2
+δ−β, where α = 2βk−Λk−2δk

2(1+3k)

5: ξ := [3k+1 × 2
(k+1)(k−4)

4 × ε−k−1] for k ≥ 2.
6: end for
7: Considering the L lattice spanned by the matrix C, as shown below
8: The reduced basis matrix T is obtained using the LLL algorithm on L.
9: for any (C, T ) do

10: Q := C−1

11: L = QT .
12: end for
13: Recover xu, y from L
14: for each triplet (xu, y, eu) do

15: φ(Nu) :=
eux2u−Zu

y2

16: Wu := gcd(φ(Nu), Nu)
17: pr−2

u := gcd(Mu,Wu)
18: qsu := Nu

pru
19: end for
20: return the essential factors (pu, qu).

The first row of the matrix L yields y = 541467, x1 = 137692, x2 = 733211, x3 = 267217. Hence using xu, y

and Algorithm 3, we compute Au =
eux

2
u−zu
y

= φ(Nu) = pr−1
u qs−1

u (pu − 1)(qu − 1), Wu = gcd(φ(Nu), Nu) and

pr−2
u = gcd(Mi,Wu), for u = 1, 2, 3.

A1 = 227957490554835761684231723530632910429212246406211859351304515854549713050656555903527147296

A2 = 3554411814954318492020455003484728545856330456953476602527009183139468000711366846142754000

A3 = 12563684360130493623784655922866922586053035390699212052526691463148112190365787717913467040

W1 = 470736127366443205408282366567570887610440470458296678949

W2 = 49893967428453878730666651905260947623790311831323299329

W3 = 93129759478181347776932335477425532246405296652124251489

p1 = 972078175929257949449

p2 = 700371289358767253323

p3 = 690335084188136980007

Finally, we compute qsu := Nu
pru

for u = 1, 2, 3 which gives

q1 = 498167216902549, q2 = 101716491133001, q3 = 195419811496561.

This results in polynomial time factorization of three moduli N1, N2, and N3.
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3 Conclusion

In this research we launch some cryptanalytic attacks on the RSA prime power modulus N = prqs. Hence we

shows that y2

x2
is among the convergents of the continued fraction expansion of e(

N−N
r+s−1

2r

(
λ

1−s
2r +λ

−s
2r

)
+N

r+s−2
2r λ

1−s
2r

)
for N − N

r+s−1
2r

(
λ

1−s
2r + λ

−s
2r

)
+ N

r+s−2
2r λ

1−s
2r as approximation of φ(N), which allows us to factored the

unbalance prime power modulus N = prqs if x <
N

1
2 −N

r+s−1
4r

(
λ

1−s
4r +λ

−s
4r

)
+N

r+s−2
4r λ

1−s
4r√

2N
1+2αr

2r

, in polynomial time.

Furthermore for j public keys (Nu, eu,MuorYu) where Mu = Yu = pr−2
u qs−2

u (pu − 1)(qu − 1) we were able to
recovered the unknown parameters x, xu, y, yu through LLL algorithm which enable us to factored k multi
prime power moduli Nu = pruq

s
u for u = 1, 2, 3 simultaneously in polynomial time.
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