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Abstract 
We develop a dynamical model to understand the underlying dynamics of 
TUBERCULOSIS infection at population level. The model, which integrates 
the treatment of individuals, the infections of latent and recovery individuals, 
is rigorously analyzed to acquire insight into its dynamical features. The 
phenomenon resulted due to the exogenous infection of TUBERCULOSIS 
disease. The mathematical analysis reveals that the model exhibits a backward 
bifurcation when TB treatment remains of infected class. It is shown that, in 
the absence of treatment, the model has a disease-free equilibrium (DEF) 
which is globally asymptotically stable (GAS) and the associated reproduction 
threshold is less than unity. Further, the model has a unique endemic equili-
brium (EEP), for a special case, whenever the associated reproduction thre-
shold quantity exceeds unity. For a special case, the EEP is GAS using the 
central manifold theorem of Castillo-Chavez. 
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1. Introduction 

A differential equation which describes some physical process is often called a 
mathematical model of the process. Again a differential equation is a mathemat-
ical equation that rates some functions of one or more variables with its deriva-
tives, differential equation arises whenever a deterministic relation involving 
some continuously varying quantities and their rates of change in space and 
time. These equations occupy the place at center stage of both pure and applied 
mathematics. For the mathematicians, mathematical modeling offers an impor-
tant tool in the study of the evolution of diseases such as Tuberculosis, HIV, 
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Hepatitis, Ebola, etc. Various epidemiology models such as SIR, SEIR, SIRS, 
SEIS, MSEIR, etc. can be built to analyze these types of diseases. Among them 
the SIR model is widely used in epidemiology and public health to compute 
number of individuals in each category of the population and to explain the 
change in the number of people needing medical attention during an epidemic 
as well as evaluate policies effectively during the endemic Tuberculosis [1]. The 
susceptible infected removal (SIR) is a system of ordinary differential equation 
in three dimensions. SIR model is analyzed by building a mathematical theorem 
which guarantees the existence of a case of Tuberculosis, the disease free equili-
brium phase and stage of disease endemic Tuberculosis [2]. 

Tuberculosis is an infectious disease usually caused by the Mycobacterium 
tuberculosis (MTB). Tuberculosis is spread through air, just like a cold or flu 
when people have active TB in their lungs, they are suffering from cough, spit, 
speak or sneeze. Tuberculosis generally affects the lungs but it can also be other 
parts of the body like brain and spine. Tuberculosis is contagious, but it is not easy 
to catch. It has slow intrinsic dynamics, the incubation period and the infectious 
period spam long term intervals in the order of years on average. Therefore, a ma-
thematical model is needed to have a better insight on the dynamics of the dis-
ease [3] [4]. Mathematical models are a simplified representation of how an in-
fection spreads across a population over time. Most epidemic models are based 
on dividing the population into a small number of compartments. 

Tuberculosis is not only a health problem, but also an economic problem of 
mankind as outbreaks usually lead to enormous expenditure on healthcare. Over 
80% of all TB patients live in 22 countries, mostly in Sub-Saharan Africa and 
Asia [5]. Owing to the rising TB mortality and infection rates (especially in de-
veloping countries), the World Health Organization (WHO) declared TB as a 
global public health emergency in 1993 [6] [7]. Over the years, a number of 
global initiatives, spear headed by WHO, were embarked upon the hope of mi-
nimizing the burden of TB worldwide. These include the Stop TB Partnership, 
International Standards of Tuberculosis Care and Patient’s Care and the Global 
Plan to Stop TB [8]. A notably medical contribution in TB control was the in-
troduction of antibiotics that resulted in significant decrease in mortality (for in-
stance, a 70% reduction in TB related mortality was recorded USA between 1945 
to 1955) [9] [10]. At present, global per capita rate of TB is increasing at ap-
proximately 1.1% per year and the number of cases at 2.4% per year [11]. Ac-
cording to the 2004 WHO report “Global Tuberculosis Control” [12], there were 
8.8 million new cases of TB worldwide in 2002, with close to 2 million TB-related 
deaths, more than any other infectious diseases. In 2011, the treatment success 
rate continued to be high at 87% among all new TB cases [13]. On the other 
hand, treatment interruptions are frequent in active TB cases during the inten-
sive phase and the continuation phase because of a wide range of reasons [14]. It 
may be recognized that treatment interruptions and the missed TB cases are the 
key factors to cause the more drug-resistant TB cases and the high TB mortality 
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[15]. In 2012, there was estimation that 450 thousand individuals developed 
multidrug-resistant TB (MDR-TB) and an estimation of 170 thousand deaths 
from MDR-TB [13], which is currently a main threat to tuberculosis control 
programs and community health [16]. Moreover, an estimated 1.3 million died 
from this disease and 8.6 million people developed TB under treatment. From 
2013 to 2015 it has seen that 6.1 million people developed TB where infected rate 
was 34%. But TB treatment averted 49 million deaths globally between 2000 and 
2015 [16]. It has seen that the rate of infected Mycobacterium tuberculosis 
(MTB) will reduce day by day, influencing on Bacilli Calmette-Guerin (BCG) 
vaccines which were first used in 1921 medically in USA and some TB treatment 
therapies. Tuberculosis infection can be transmitted through primary progres-
sion after a recent infection, re-activation of a latent infection and re-infection of 
a previously infected individual [17]. A small proportion of those infected will 
develop primary disease within several years of their first infection. Those who 
escape primary disease may eventually re-activate this latent infection decade af-
ter an initial transmission event. Lastly, latently infected individual can be 
re-infected by a process known as exogenous re-infection and develop the dis-
ease as a result of this new exposure [18]. However, if a person got the 
tuberculosis, then it couldn’t only be seen by the main caution of factors which is 
causing tuberculosis disease, but also the possibility of exogenous re-infection 
happening. Tuberculosis is a vaccine prevented disease. The current practice in 
most part of world especially in developed countries is that children aged 12 to 
15 months are given a dose of the BCG vaccine. In practice, even vaccinated 
individual may still be susceptible if vaccination failure occurred or their vaccine 
induced immunity waned. 

Recent years have seen an increasing trend in the representation of mathe-
matical models in publications in the epidemiological literature, from specialist 
journals of medicine, biology and mathematics to the highest impact generalist 
journals [19], showing the importance of inter disciplinary. 

In this paper, we have formulated the transmission dynamics of Tuberculosis 
in the presence of treatment and investigated its role in the dynamics of the disease. 

2. Formulation of Model 

Following the classical assumptions, we formulate a deterministic, compact 
mental, mathematical model to describe the transmission dynamics of measles. 
The population is homogeneously mixing and reflecting the demography of a 
typical developing country, as it experiments an exponentially increasing dy-
namics. In other to describe the model equations, the total population (N) is di-
vided into three classes: Susceptible (X), infected (Y) and Recovered (Z). Here 
we shall detail the transitions among these four classes as depicted in Figure 1. 

The class X of susceptible is increased by birth or immigration at a rate Λ . It 
is decreased by infection following contact with infected individuals at a rate β, 
and diminished by natural death at a rate μ. The class Y is decreased by testing 
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and therapy at a rate r, breakthrough into infected class at a rate β and dimi-
nished by natural death at a rate μ. The class Y of infected individuals is gener-
ated by breakthrough of individuals at a rate k. The class is decreased by recov-
ery from infection at a rate β and diminished by natural death at a rate μ. The 
model assumes that both recovered exposed individuals and recovered infected 
individuals become permanently immune to the disease. This generates a class R 
of individuals who have complete protection against the disease. 

The transitions between model classes can now be expressed by the following 
system of first order differential equations: 

The description of Variables of the TB Model is shown in Table 1. 

( ) 1 2
d
d
X Y Z X X rY r Z
t

β η µ= Λ − + − + +               (1) 

( ) 1
d
d
Y Y Z X k Y
t

β η= + −                     (2) 

2
d
d
Z kY k Z
t
= −                         (3) 

Since the model monitors human population, all the associated parameters 
and state variables are non negative t ≥ 0. It is easy to show that the state va-
riables of the model remain non-negative for all non-negative initial conditions. 
Consider the biological feasible region. 

( ) 3, , :S I R R N
µ+

 Λ
Ω = ∈ → 

   
From the model Equation (1) to (3) it will be shown that the region is positive. 

The total population of individuals is given by 
 

Table 1. Description of variables of the TB model. 

Variables Description 

X Susceptible class 

Y Latently infected (exposed) class 

Z Infected class 

Λ  Recruitment rate into the population 

µ  Natural death rate 

d Death rate due to infection 

β  Probability rate of transmission 

1r  Treatment rate for exposed class 

2r  Treatment rate for infected class 

k Infection rate for exposed individuals 

1k  Progression rate of exposed class 

2k  Progression rate of infected class 

η  Rate of infectiousness of infected class, where 1η >  
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N S I R= + +  

3. Analysis of Model 

Disease Free Equilibrium (DFE): The equilibrium points of the system can be 
obtained by equating the rate of changes of zero, given by 0ε , 

0 , 0, 0X Y Zε
µ

 Λ
∴ = = = = 

 
                  (4) 

The stability of the DFE will be analyzed using the next generation method 
[22]. The non-negative matrix F (of the new infection terms) and the non-singular 
M-matrix V (of the remaining transfer terms) are given, respectively by, 

0 0
F

β βη
µ µ
Λ Λ 

 =   
   

and 1

2

0k
V

k k
 

=  − 
 

where, 1 1 2 2,k r k k r dµ µ= + + = + + . 
The associated reproduction number, denoted by 0R , is given by ( )1

0R FVρ −= , 
where ρ  denotes the spectral radius (dominant eigenvalue in magnitude) of 
the next generation matrix FV ′ . It follows that 

11

1 2 2

1 0

1
k

V
k

k k k

−

 
 
 =
 
 
   

( )2
1

1 2

0

k k
FV k k

β η
µ−

Λ + 
 ∴ =  
 
   

( )2
0

1 2

k k
R

k k
β η

µ
Λ +

∴ =                        (5) 

Lemma: The disease free equilibrium 0ε  of the model (1), (2) and (3), is lo-
cally asymptotically stable (LAS) if 0 1R <  and unstable if 0 1R > . 

The threshold quantity, 0R , is the reproduction number for the model. The 
epidemiological implication of Lemma 1 is that Tuberculosis spread can be ef-
fectively controlled in the community (when 0 1R < ) if the initial sizes of the 
populations of the model are in the basin of attraction of the disease free equili-
brium 0ε . 

Since we have considered Tuberculosis model in some stages, are shown the 
backward bifurcation, where the stable DFE co-exists with a stable endemic 
equilibrium when the associated reproduction threshold ( 0R ) is less than unity, 
it is instructive to determine whether or not the model also exhibits this dynam-
ical feature. This is investigated below. 

Theorem 1: The model (1), (2) and (3) undergoes a backward bifurcation at 
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0 1R =  if the inequality holds. 
Proof: The proof of theorem, which is based on the use of center manifold theory. 

The backward bifurcation phenomenon of the model is numerically illustrated be-
low. It is convenient to let 1 2 3, ,X x Y x Z x= = = , so that 1 2 3N x x x= + + . Fur-
ther, by introducing the vector notation ( )T

1 2 3, ,X x x x= , the model can be 
written in the form,  

( )d
d
x F x
t
= , 

where ( )T
1 2 3, ,F f f f= , as follows 

( )

( )

1
1 2 3 1 1 1 2 2 3

2
2 2 3 1 1 2

3
3 2 2 3

d
d
d
d

d
d

x f x x x x r x r x
t
x f x x x k x
t

x
f kx k x

t

β η µ

β η

= = Λ − + − + +

= = + −

= = −

            (6) 

where, ( )Y Zλ β η= + . The jacobian of the system at the DFE ( )0ε  is given 
by, 

( )0 0

0

J k

k d

β βηµ
µ µ

β βηε µ
µ µ

µ

Λ Λ − − − 
 

Λ Λ = − − 
 
 − −
    

To analyze the dynamics of the model and we compute the eigenvalues of the 
jacobian of the equations at the disease free equilibrium (DEF). It can be shown 
that this jacobian has a left eigenvector is given by ( )T

1 2 3, ,V v v v=  where, 

1 0v =  
2 freev =  

and 3 2
2

v v
k

βη
µ
Λ

=  

The right eigenvector is given by, ( )T
1 2 3, ,W w w w=  

( )2
1 22

2

k k
w w

k
β η

µ
Λ +

= −
 

2 freew =  and 2
3

2

kww
k

=  

Theorem 2: (Castillo-Chavez and Song) 
Consider the following general system of ordinary differential equations with 

a parameter ϕ . 

( )d ,
d
x f x
t

ϕ= , : nf ℜ ×ℜ→ℜ  and ( )nf C∈ ℜ ×ℜ  

where 0 is an equilibrium of the system (i.e. ( )0, 0f ϕ =  for all ϕ  and assume 
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A1: ( ) ( )0,0 0,0i
x

j

f
A D f

x
 ∂

= =   ∂ 
 is the linearization matrix of the system (6) 

around the equilibrium 0 with ϕ  evaluated at 0. Zero is a simple eigenvalue of 
A and other eigenvalues of A have negative real parts. 

A2: Matrix A has a right eigenvector w and a left eigenvector v (each corres-
ponding to the zero eigenvalue). 

Let, kf  be the kth component of f and 

( )

( )

2

, , 1

2

, 1

0,0

0,0

n
k

k i j
k i j i j

n
k

k i
k i i

f
a v w w

x x

f
b v w

x ϕ

=

=

∂
=

∂ ∂

∂
=

∂ ∂

∑

∑
 

The local dynamics of the system around the equilibrium point 0 is totally de-
termined by the sings of a and b. Particularly, 0, 0a b< > , the system does not 
show backward bifurcation at 0 1R = . In these cases, 0 1ϕ< 

, 0 becomes un-
stable and there exists a positive locally asymptotically stable equilibrium. 

Computations of a and b: 

( ) ( )
2

2 1 2 3
, , 1

0,0 0
n

k
k i j

k i j i j

f
a v w w v w w w

x x
β η

=

∂
= = + <

∂ ∂∑           (7) 

( ) ( )2
2 3 2

, 1
0,0 0

n
k

k i
k i i

v w wf
b v w

x
π η

ϕ µ=

+∂
= = >

∂ ∂∑             (8) 

This result is summarized below. 
Theorem 3: The model (1), (2) and (3) exhibit backward bifurcation at 

0 1R =  whenever 0, 0a b< > . It should be noted that, in the absence of recov-
ery exposed stage and infected stage the backward bifurcation co-efficient, a is 
given in below, 

( )2 1 3 2 0a v w w wβ η= + <  
since all the model parameters and the eigenvectors ( )2,3,iw i =   and 
( )1,2,iv i =   are non-negative and 0 1ε< < . Thus, since the inequality does 

not hold in this case, the model (1), (2) and (3) will not undergo backward bi-
furcation in the absence of recovery exposed stage and infected stage. This result 
is summarized below. 

Lemma: The model (1), (2) and (3) does not undergo backward bifurcation at 

0 1R =  in the absence of treatment ( 1 2 0r r= = ). If we consider 1r  and 2r  exist 
then the coefficient of a maybe positive and b is also positive. 

The backward bifurcation phenomenon of the model is numerically illustrated 
in below: 

Simulations of the model shows that Figure 1 is backward bifurcation dia-
gram for the population of susceptible individuals, Figure 2 is backward bifur-
cation diagram for the population of latent indiviuals and Figure 3 is backward 
bifurcation diagram for the population of infected indiviuals. Parameter values 
used are as given in Table 2, with 2000π =  [20], 0.02µ =  [20], 0.1d =  
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[20], 0.08η = , 1 0.85r = , 2 0.9r = , 0.7k =  [21]. 

4. Global Stability of DFE of the TB Model 

Let, 
 

 
Figure 1. Backward bifurcation diagram of susceptible class. 

 

 
Figure 2. Backward bifurcation diagram of latent class. 
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Figure 3. Backward bifurcation diagram for population of Infected class. 

 
Table 2. Data summary of Parameters of the TB Model. 

Parameters Values 

Λ  2000 [20] 

µ  0.02 [20] 

d 0.1 [20] 

η  0.08 (assumed) 

1r  0.85 (assumed) 

2r  0.9 (assumed) 

k 0.7 [21] 

 

( )

( ) ( )

d ,
d
d , , ,0 0.
d

X H X Z
t
Z G X Z G X
t

=

= =
                   (9) 

where, 
( ),0X X=  and ( ),Z Y Z=  with the components of 1X R∈  denoting the 

uninfected population and the components of 2Z R∈  denoting the infected 
population. 

The disease free equilibrium is now denoted as, 

( )* *
0 ,0,0 , ,0,0E X X

µ
 Λ

= =  
   

Now, ( )d ,0
d
X H X
t
= , *X  is globally asymptotically stable (GAS) 
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( ) ( ) ( )ˆ ˆ, , , , 0G X Z Pz G X Z G X Z= − ≥  for ( ),X Z ∈Ω .      (10) 

where, ( )* ,0ZP D G X=  is an M-matrix (the off diagonal elements of P are non 
negative) and Ω  is the region where the model makes biological sense. If the 
system (9) satisfies the conditions of (10) then the theorem below holds. 

Theorem 4: The fixed point ( )*
0 ,0Xε  is a globally asymptotically stable 

equilibrium of system (9) provided that 0 1R <  and the assumptions in (10) are 
satisfied. 

Proof: 
From the system (1) and (2) we have, 

( ) 1 2,0
0

X rY r Z
H X

µΛ − + + 
=  
   

( ) ( ) ( )
( ) ( ) ( )

ˆ, ,
ˆ , ,

G X Z P Z G X Z

G X Z P Z G X Z

= −

⇒ = −
                 (11) 

where, 

( ) 1

2

0k
P Z

k k
− 

=  −   

and ( ) 1

2

,
YX ZX k Y

G X Z
kY k Z

β βη+ − 
=  − 

 

Putting values ( )P Z  and ( ),G X Z  in (11) no equation and we obtain, 

( ) ( )
( )

1

2

ˆ ,ˆ , 0ˆ ,

G X Z
G X Z

G X Z

 
 = =
 
 

                  (12) 

It is clear that ( )ˆ , 0G X Z =  for all ( ),X Z ∈Ω  we also note that matrix P is 
an M-matrix since its off diagonal elements are non-negative. 

5. Endemic Equilibrium Point (EEP) of the TB Model 

Let, ( )** ** **
1 , ,X Y Zε =  represents any arbitrary endemic equilibrium of the 

Tuberculosis model. Solving the Equations (1)-(3), the model has the following 
endemic equilibrium points (EEP), 

( )
( )( ){ }
( )
( )( ){ }

**

0

2 0**

0 2

0**

0 2

1

1

X
R

k R
Y

R r d k

k R
Z

R r d k

µ

µ µ µ

µ µ µ

Λ
=

Λ −
=

+ + +

Λ −
=

+ + +  
Existence of Endemic Equilibrium Point (EEP): special case 
In this section, the possible existence and stability of endemic (positive) equi-

libria of the model (1), (2) and (3) (i.e. equilibria where at least one of the infected 
of the model is non-zero) will be consider for the special case where recovery rate 
from exposed stage and infected stage does not occur (i.e. 1 2 0r r= = ). 
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Let, ( )** ** **
1 , ,X Y Zε =  represents any arbitrary endemic equilibrium of the 

model (1), (2) and (3) with 1 2 0r r= = . Solving the equations of the system at 
steady-stage gives, 

( ){ }
( )

**

**

** 0

X y z

Y y z

Z

β η µ

β η

= − + −

= +

=

                    (13) 

The expression for λ , defined in (1), (2) and (3) at the endemic steady-state 
is given by 

( )** y zλ β η= +                        (14) 

For mathematical convenience, the expression in (14) is re-written, 

( )
( )( ){ }

( )
( )( ){ }

2 0 0**

0 2 0 2

1 1k R k R
R r d k R r d k

η
λ β

µ µ µ µ µ µ

 Λ − Λ −
= +  + + + + + +   

And we get, 

( )( )
( )( ){ }

0 2**

0 2

1
0

R k k
R r d k
β η

λ
µ µ µ
Λ − +

= >
+ + +

               (15) 

The components of the unique endemic equilibrium 1ε  can be obtained by 
substituting the unique value of **λ , given into the expression in (14). Thus, the 
following has been established. 

Lemma: The model with recovery rate from exposed stage and infected 
stage 1 2 0r r= =  has a unique endemic equilibrium, given by 1ε , whenever 

**
0 1, 0R λ> > . 

6. Global Stability of EEP by Non-Linear Lynapunov Function 

Theorem 5: The unique EEP 

{ }
( )

( )( ){ }
( )

( )( ){ }

** ** **
1

2 0 0

0 0 2 1 0 2 1

, ,

1 1
, ,

X Y Z

k R k R
R R r d k R r d k

ε

µ µ µ µ µ µ µ

=

 Λ − Λ −Λ =  
+ + + + + +  

 of the 

model with 1 2 0r r= =  is globally asymptotically stable (GAS), whenever 

0 1R > . 

Proof: 
Let, 1 2 0r r= =  and 0 1R > , so the EEP, 1ε  exists. Consider the following 

non-linear Lyapunov function, 

** ** ** ** ** **
1** ** **ln ln lnX Y ZL X X X Y Y Y a Z Z Z

X Y Z
     = − − + − − + − −     
     

 (16) 

With Lyapunov derivative is given by, 
** ** ** **

2

1 1 1X Y X ZL X Y Z
X Y k Z

βη     
= − + − + −     
     

   

 
Now, 
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( )

( ) ( )

2** **
** ** ** ** **

2 2** ** **
**

**
** ** ** ** **

2
Y X

L Y X Z X X X
X

Z X X
YX Y kY

X X
Y ZXY Y X X Z
Y

β
β βη µ µ

βη µ
β µ

βηβ β βη

= + + − −

− − + − −

− − + +



        (17) 

And 

( )
** **

2
2

**
** ** ** ** ** ** **

** **

1X Z kY k Z
k Z

Y Z YX Z X Z X Z X Z
ZY Y

βη

βη βη βη βη

 
− − 

 

= − − +

     (18) 

Adding (17) and (18) and we get, 
** **

** ** **
** **

** ** **
** **

** ** **

2 2

3

X X X XX X Y
X XX X

X Y Z X Y ZX Z
X Z YY X Z

µ β

βη

   
= − − + − −   

   
 

+ − − − 
   

Since the arithmetic mean exceeds the geometric mean, it follows then that 
**

**

** ** **

** ** **

2 0

3 0

X X
XX

X Y Z X Y Z
X Z YY X Z

− − ≤

− − − ≤

               (19) 

So that 0L ≤  for 0 1R > . Hence, L is a Lyapunov function of the system 
with 1 2 0r r= =  on Ω . In other words, ( ) ( )** ** **lim , , , ,

t
X Y Z X Y Z

→∞
= . 

Thus, by the Lyapunov function L and LaSalle’s Invariance Principle every so-
lution to the equation in the model, with 1 2 0r r= =  approaches 1ε  as t →∞  
for 0 1R > . 

7. Numerical Simulation and Discussions 

The effect of the TB transmission dynamics is monitored by simulating the 
model with the parameters from Table 2. In Figure 4, TB transmission decreas-
es gradually with the time where 0 1R <  (with 0.9β = , 0.09β = , 0.09β = ). 
This transmission has to observe as a latent stage with a certain time. In Figure 
5, one infected TB patient takes medicine at the rate ( )1 20.5, 0.5r r= =  in a 
proper time, his infection is decreases rapidly and the infection can be eradicated 
from the community within very short time. If he takes treatment at the moderate 
rate ( )1 20.05, 0.05r r= = , he cures from the disease gradually day by day with 
time. On the other hand, if he takes treatment at the low rate ( )1 20.005, 0.005r r= = , 
he will be cure from the disease at very slow rate but he gets remove from TB 
disease at a certain period. 

In Figure 6, it is shown that when 0 0.8544 1R = < , TB infected person gets 
remove from tuberculosis rapidly after a certain period with proper treatment 
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and TB disease is stable for the value of 0R . On the other hand, in Figure 7, it is 
shown that when 0 4.7466 1R = > , TB infected person spreads there infection at 
a stable stage with a certain time and TB disease is unstable for the value of 0R  
and the disease can’t eradicate from the community permanantly. 

 

 
Figure 4. Diagram of TB transmission rate. 

 

 

Figure 5. Diagram of TB treatment. 
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Figure 6. Simulation of the model showing the total number of infected individuals as a 
function of time, using the parameters in Table 2 where 0 0.8544 1R = < . 

 

 
Figure 7. Simulation of the model showing the total number of infected individuals as a 
function of time, using the parameters in Table 2 where 0 4.7466 1R = > . 

8. Result 

We rigorously analyzed (mathematically and numerically) the dynamics of TB in 
the model. Some mathematical and epidemiological findings of the study are 
given below: 

1) The model has a disease free equilibrium (DFE) which is asymptotically 

https://doi.org/10.4236/ajcm.2019.93012


J. Nayeem, I. Sultana 
 

 

DOI: 10.4236/ajcm.2019.93012 172 American Journal of Computational Mathematics 
 

stable 0 1R <  and unstable if 0 1R > . The model is also globally asymptotically 
stable for a special case when 1 2 0r r= = . 

2) When 0 0.8544 1R = < , the rate of infected individuals increases and after a 
certain time it smoothly decreases. 

3) And lastly, the prevalence is very high when 0 4.7466 1R = > . 

9. Conclusions 

A deterministic model for the transmission dynamics of TB in the population 
level is designed and rigorously analyzed. Some of the main findings of the study 
include the following: 

1) The model exhibits a phenomenon of backward bifurcation, when DFE is 
locally asymptotically stable. 

2) The model has an EEP which is globally asymptotically stable for special 
case (i.e. 1 2 0r r= = ). 

The model does not undergo backward bifurcation in the absence of 
treatment stage. 
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