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ABSTRACT
Obstacles on the railway track leading to derailment accidents 
that cause significant damages to the railway in terms of killed 
and injuries over the years. Count of accident is increasing day 
by day due to its causes such as boulders on track, trees falling 
on the gauge, etc. Monitoring these events has been possible 
with humans working in railways. But when it comes to the real- 
time scenario, it turns to fatal work and requires more workers, 
particularly in a dangerous area. Also, this manual monitoring is 
not adequate to halt derailment accidents. In this perspective, 
railroad obstacle detection from aerial images has been grow-
ing as a trending research topic under artificial intelligence. 
Also, this mandates the assessment of familiar and latest deep 
neural network models such as CenterNet Hourglass, 
EfficientDet, Faster RCNN, SSD Mobile Net, SSD ResNet, and 
YOLO that detects the violator of accidents with the aid of our 
own developed Rail Obstacle Detection Dataset (RODD). These 
detectors were implemented on real-time aerial railway track 
images captured by Unmanned Aerial Vehicle (UAV) in India. 
Initially, the input images in the collected datasets were under-
gone to data preprocessing after that; the above mentioned 
deep neural models were trained individually. After that, the 
experiment is analyzed based on training, time, and perfor-
mance metrics. At last, the results are visualized, evaluated, 
and compared; hence based on the performance, some effec-
tive deep neural network models have identified for detecting 
obstacles. The result shows that SSD Mobile Net and Faster 
RCNN can be used for railroad obstacle detection even in the 
different lighting conditions in railway with the accuracy of 
96.75% and 84.75%, respectively.
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Introduction

The Indian railway network is the most significant railway containing 
115,000 km of railway track covering 65,436 km. As per the annual report of 
Indian Railways (Indian Railways Annual Report 2020), 256 numerous 
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railroad accidents were recorded for the past five years. Among these, 216 
accidents included derailments and level crossing accidents, including pedes-
trians. Totally 349 people killed in these accidents, 621 were seriously injured. 
Further, the cause of these accidents due to human failures of railway staff was 
173. Hence well-advanced research and development are required in safety 
and technology. The static obstacle is one of the top risk elements of the 
railroad, so the fixed obstacle detection system requirement is increased due to 
the potentially unpredictable activities of the railroad (Fayyaz and Johnson 
2020).

UAVs emerge to be suitable for many applications especially in transporta-
tion. Various other applications include agriculture, security surveillance, 
public meetings, forest inspection, traffic monitoring, etc. Camera furnished 
UAVs can capture an efficient acquisition progression for creating intelligent 
transport systems (Puppala and Sarat Chandra Congress 2019). Devices such 
as rail cars (Liu et al. 2017), LiDAR and vision based systems are used for 
inspecting railway track but the major limitations are high cost and inadequate 
review cycle. On the other hand, UAVs can be used to inspect the railroad at 
regular intervals particularly during bad weather conditions. Due to UAV’s 
high mobility and low cost, the Indian Railways decided to use UAV for 
monitoring railway environment to provide passengers safety (The 
Economic Times, 2020).

Currently, traditional railroad inspection methods such as manual moni-
toring and ground vehicles are followed by railways. In Indian Railways, the 
keyman is responsible for inspecting the railway track condition (Indian 
Railways Permanent Way Manual 2020). Keyman responsibility is monitoring 
both the tracks and bridges, the whole beat once a day on foot, and come back 
from the opposite rail. A manual visual inspection cannot be performed 
frequently, and it is inefficient (Praneeth et al., 2021). In real-time, this job is 
very complex, particularly in a dangerous area, which requires more workers 
for observation and also to stop the accidents, this method is not an adequate 
one. On May 14, 2020, Due to a boulder collapse between Chimidaplli and 
Borra Caves railway stations in Andhra Pradesh, India, a railway worker died, 
and six persons are severely injured (Railway worker Killed, 2020). Thus, 
a well-advanced research and development is required to conduct regular 
interval monitoring of railway track and to ensure safety of the passengers 
(Kumar Sen, Bhiwapurkar, and Harsha 2018).

Existing wireless sensor networks for monitoring the condition of rails is 
a well-known technology where sensors are mounted on the object being 
observed (e.g. track, bridges, train bogies, etc.), which is better than manual 
inspection (Hodge et al. 2015). Accelerometer integrated along railway tracks 
was measured the obstacles dropped and vibrations from the rail track. 
Vibration sensors collect various types of signals, so bayesian analysis isolates 
the obstacle drop signal from other heavy noises (Sinha and Feroz 2016). 
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Sensors are fixed at both the side of rails, which consists of 18 sleepers (one 
railway panel) in which a two-layer node structure is deliberated, one is 
WPAN which follows ZigBee design for achieves low power consumption, 
and the next one is WLAN which uses Wi-Fi design and has high data rate 
(Manoj Tolani et al. 2017). As a whole, while monitoring the condition of a rail 
using sensors at some interval of time, power can be low quickly. Mainly 
batteries are used in sensors for the power supply but changing the batteries in 
dangerous areas such as bridges, dense forests, etc., causes risk. In addition, 
railway application requires more sensors to be installed for monitoring the 
condition of railway track.

Over the last decades, significant developments in onboard sensor systems 
have increased the research on obstacle detection in the railroad (Gebauer, 
Pree, and Stadlmann 2012). On-board sensors are characterized as active 
sensors such as radar, LiDAR, and ultrasonic, likewise passive sensors such 
as thermal cameras and RGB cameras. All sensors are categorized with few 
shortcomings based on real-time and experimental conditions such as expen-
sive ultrasonic and LiDAR sensors under heavy rain, limited usability of RGB 
cameras at night and inside tunnels and low contrast thermal camera images 
under high environmental conditions (Danijela Ristic-Durrant, Franke, and 
Michels 2021). To overcome the limitations and use the positive characteristics 
of individual sensors, multi-sensor fusion plays a vital role in onboard obstacle 
detection. A multisensor system comprising LiDAR and video cameras was 
used that follows the time-of-flight principle to provide a high longitudinal 
precision (Möckel, Scherer, and Schuster 2003). Likewise, stereo vision cam-
eras, radar, mono cameras, and lasers were used to implement vision-based 
obstacle detection for an autonomous train (Ukai, Tomoyuki, and Nozomi 
2011). Always cameras give rich visual information and precise data at high 
resolution, vividness and minutiae of a scene that no other sensors like a laser, 
radar, ultrasonic, and LiDAR can match.

Accordingly, computer vision (CV) and artificial intelligence-based meth-
ods play a significant role in detecting obstacles, especially in Railway Industry. 
The traditional CV method uses ROI (Region of Interest) for rail extraction 
and the Sobel edge detection technique for stationary object detection (Ukai 
2004). The optical flow method is applied between frames to detect dynamic 
hazardous obstacles and neglect irrelevant background objects (Uribe et al., 
2012). Artificial intelligence enabled improvement in deep neural network 
technology and excellent advancement in object detection. The Faster R-CNN 
is used for object detection on the detected rail tracks in which canny edge 
detection and Hough transform are used for ROI that is rail track (Kapoor, 
Goel, and Sharma 2018). A multi-level obstacle detection method is presented 
with two parts: the creation of a feature map using Residual Neural Network 
(RNN) for object detection of various sizes at different distances followed by 
a sequence of convolution layers are implemented for feature extraction, 
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which draws bounding boxes and calculates confidence score (Xu et al. 2019). 
On the other hand, DisNet is presented with two steps: the first, YOLOv3, for 
object detection, and the second is a multiple hidden layers network for 
distance estimation (Risti et al. 2020).

Recent technological developments in Unmanned Aerial Vehicles (UAVs) 
and aerial image processing have been drastically influenced by the field of 
deep learning techniques (Srivastava, Narayan, and Mitta 2021). Deep learning 
algorithms play a pivotal role in aerial image processing functions, such as 
segmentation (Rampriya, Sabarinathan, and Suganya 2021) and object detec-
tion (Jiao et al. 2019). In forthcoming years, the combination of computer 
vision, artificial intelligence, and UAV (Unmanned Aerial Vehicle) will 
become a trending technology; can be used to monitor the state of the railroad 
regularly, thus confirming traveler safety. Few railroads are begun to use 
UAVs for monitoring the condition of the railway track (US Department of 
transportation 2018). Even Indian Railways has intended to practice drones 
for passenger’s safety and security surveillance (The Economic Times 2020). 
The advantages of UAVs can provide the benefits of frequent monitoring 
activities compared to traditional obstacle detection methods like better effi-
ciency, high mobility, early obstacle detection on the railroad and decreasing 
cost (Flammini et al. 2016). Thus, an intelligent detection technique based on 
UAV is highly recommended to frequently and dynamically monitor the 
railway tracks.

Many deep neural networks with better efficiency and accuracy have been 
effectively established and implemented in object detection. There are broadly 
two classifications, one stage detector and two-stage detectors (Mittal, Singh, 
and Sharma 2020). The algorithms of this paper, such as the Centernet (Duan 
et al. 2019), SSD (Liu et al. 2016), and YOLO (Redmon and Farhadi 2018), 
come under the type of one stage detector which works at faster real-time 
implementations, whereas Faster-RCNN (Ren et al. 2015) come under the 
classification of two-stage sensors that has better accuracy on object detection 
and localization. Low-altitude aerial image processing is a promising field that 
comprises many challenges such as density distribution of objects, huge scale 
variations, arbitrary orientations, and turbulence of atmospheric conditions 
leading to a blurring of objects (Zhou et al. 2019). In the case of low-altitude 
aerial scenes, the high value of accuracy result is a rare occurrence. Therefore, 
robust object detection algorithm that has scope in low-altitude based UAV 
image.

This research work aims to implement railroad obstacle detection on real- 
time datasets captured by UAV. We have created from scratch a dedicated 
dataset from our aerial video recordings at a railway called Railway Obstacle 
Detection Dataset (RODD) with annotations for obstacle detection on rail-
ways using various deep neural networks. To collect our recordings, we got 
permission from Indian Railways, Tiruchirappalli Division, Tamilnadu, India, 
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to capture railway track images with obstacles using UAV to implement 
obstacle detection. Next, we develop a deep learning model study on this 
dataset and evaluate its performance based on recently advanced metrics. 
The result confirmed that the SSD MobileNet model leads to satisfactory 
detection accuracy, especially given the diversity of obstacles. The aim of this 
comparative study is to analyze various deep learning techniques and identify 
a suitable deep learning network model for obstacle detection in UAV mon-
itored railway environment.

The contributions of this paper are: (1) The collection of real-time aerial 
railroad videos with obstacles using UAV and convert it into aerial images. (2) 
Created Railroad Obstacle Detection Dataset (RODD) and to prevent over-
fitting data augmentation is implemented that expands the datasets followed 
by bounding box creation and labeling has done for creating ground truth 
images for training and testing phase. As far as we can tell, this is a dedicated 
dataset for detecting railroad obstacles using UAV captured images. (3) 
Various deep neural network models such as CenterNet Hourglass, 
EfficientDet, Faster RCNN, SSD MobileNet, SSD ResNet, and YOLO are 
implemented for finding obstacles on aerial railroad images. Experimental 
results and evaluation showed that the MobileNet achieves better accuracy 
compared to other models. (4) Predicted various lighting influences of aerial 
railroad images with obstacles, and the testing results endorsed the varying 
lighting conditions of the input images with better performance.

Materials and Methods

Study Area and Data Collection

The study area is Tiruchirapalli Junction Railway Station in Tiruchirapalli of 
Tamil Nadu in India, as shown in Figure 1. The elevation of the railway station 
spans 95 m with eight platforms and 13 tracks. Among these tracks, a new way 
was used for data collection. The rail track field was set up with considering 
various obstacles such as a boulder, iron rod, branch, barrel, person, and jerry 
can (Figure 2) for aerial railroad obstacle detection. As per guidelines released 
by Directorate General of Civil Aviation (DGCA) for operating drones in 
India (Ananth Padmanabhan 2017). The major requirements for the use of 
UAV in railway environment are initially a licensed remote pilot is appointed 
for collecting the dataset who has unique identification number from DGCA 
for operating in the railroad surroundings. After that, obtain permission from 
division of Indian railways where the datasets are need to be collected. Since 
the chosen UAV comes under the category of Micro type, it is set to function 
within the visual line of sight (VLOS).
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The DJI Phantom 4 PRO UAV is furnished with a Sony DSC-RX1RM2 
camera, a 20 M (megapixel) full resolution camera used for data collection. 
The focal length and video recording mode were 8.8 mm and 1920 × 1080 full 
high definition at 65 Mbps. The aerial videos are collected based on the 
parameter settings, and the flight path was remotely controlled from the 
ground station. The total length of the railroad structure in the study area is 
500 m. Since it is a low-altitude based aerial railroad obstacle detection 

Figure 1. Location map of the study area ((A) India, (B) Tamil Nadu, (C) Tiruchirapalli, and (D) 
Railroad Aerial Monitoring for Data Collection).
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processing, the flying altitude was fixed as 10.5 m. Altitude was assigned based 
on the specifications of Research Design and Standards Organization (RDSO, 
2003), India in which the normal height of overhead line from rail level is 
5.55 m. The date of the data collection shoot was September 15, 2020, and the 
video file format was.mov. After collecting the aerial videos, it was uploaded to 
the IBM Cloud annotation tool (Oliveira et al. 2016) for converting it into 
frames with.jpg image format and downloaded a total of 315 required images 
with obstacles. Once all the videos are converted into structures, those images 
are maintained as a RODD dataset (Railroad Obstacle Detection Dataset). 
However, In general some limitations such as security hazards, hard to collect 
data during cyclone, flood, etc. should be considered during data acquisition 
using UAV.

Data Preprocessing

This phase comprises two steps: data augmentation and data annotation. Since 
the initial dataset is minimal for training and testing, data augmentation is 
implemented to avoid overfitting and enhance the performance of the deep 
neural network models.

The build dataset of 315 images was expanded to six times of original size 
via various geometric transformations processes, a total of 2002 images. From 
Keras library, ImageDataGenerator class is used for implementing data aug-
mentation (Aiman Soliman and Jeffrey Terstriep, 2019), which comprises 
various arguments such as rotation (40, 60), shear (0.2), zoom (0.2), brightness 
(0.5, 1.5) and horizontal flip. Through the mentioned operation, RODD was 
created with 80% corresponding to 1602 aerial images are acquired for train-
ing and 20% of 400 aerial images for testing.

Figure 2. Sample obstacle railroad aerial images in the RODD used to validate diverse deep neural 
network models where (a)–(f) represents classes used in this study.

APPLIED ARTIFICIAL INTELLIGENCE e2018184-1491



The next step of augmentation is data annotation using the LabelImg tool used 
for bounding box creation and labeling. To define the location of the target 
obstacles bounding box is need to be created (Z-Q Zhao et al. 2018) with six 
different labellings such as barrel, boulder, person, iron rod, branch and jerrycan. 
To provide suitable training and testing files for the detectors, two formats of 
the bounding box are created one is pascal_voc, and another is yolo. 
Consequently, TensorFlow records and label map files are generated for training 
the latest tensor flow two object detection models, which is discussed under 
section 2.3.

In terms of calculation, training the deep neural network models in this 
study are intensive. All the configurations are done under anaconda 
prompt, and the various model training in our study was completed in 
Colab Pro for implementing railroad obstacle detection. Further, the 
attained inference graph is used for testing the images using Jupyter 
Notebook. Since the training was done on Colab Pro, its configuration 
was set as Tesla 4 GPU and 25 GB RAM. Except for YOLOv3, the other 
models are chosen from the latest TensorFlow 2 detection model zoo 
(Selahattin Akkas, Singh Maini, and Qiu 2019). The pipeline of this 

Figure 3. Pipeline of assessment on low altitude UAV-based railroad obstacle detection using deep 
neural network models.
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study comprises four main tasks: dataset collection, pre-processing, train-
ing, validation, prediction, and comparison among the deep network 
models (Figure 3).

Deep Neural Network Models

Convolutional Neural Network (CNN) is the most commonly used network 
amongst the deep neural network structures (Kaster, Patrick, and Clouse 
2017). CNN comprises of multi-layered architecture where each layer executes 
its own function and passes the resultant data to the next layer. Multi-layered 
structure has multilayered deep neural network with back propagation for 
training usage.

The main two stages involved in CNN are feature extraction and classifica-
tion in which layers such as input layer, convolution layer, activation function 
and pooling fall under the taxonomy of feature extraction subsequently fully 
connected layer, drop out and classification layer fall under the taxonomy of 
classification (Ghiasi, Lin, and Le 2018). We have evaluated the performance 
of the four familiar CNN frameworks such as CenterNet, SSD, Faster RCNN 
and YOLOv3. Further SSD model is used as an object detection algorithm with 
three backbone models such as EfficientDet, MobileNet and ResNet50 with 
various input sizes. As a whole, in this study, nine deep neural network models 
are evaluated (Table 1) for obstacle detection on low-altitude aerial railroad 
images at high resolution. These deep neural network models were chosen as 
an outcome of the literature review accomplished subject to the input size, 
number of parameters and depth. Especially, SSD is a rapid real-time single- 
shot object detector for multiple classes and considerably more accurate (Liu 
et al. 2016).

CenterNet Hourglass
CenterNet identifies objects utilizing a triplet, including one keypoint 
and two corners (Dual et al., 2019). Thus, it models any entity using the 
center point of the bounding box with the aid of keypoint estimation 
and reverts to properties like localization, orientation, even poses and 

Table 1. Properties of deep neural networks used in this study.

Sl. no. Type Object detection algorithm
Backbone 

(feature extraction) Input size
Parameters 
(millions) Depth (#layers)

1. 1-stage CenterNet Hourglass104 512 × 512 4.80 104
2. 1-stage SSD EfficientDet-d0 512 × 512 3.9 3

EfficientDet-d1 640 × 640 6.6 3
EfficientDet-d2 768 × 768 8.1 3

3. 1-stage SSD MobileNetv1-FPN 640 × 640 4.24 28
MobileNetv2 320 × 320 3.47 53

4. 1-stage SSD ResNet50 640 × 640 25.5 50
5. 1-stage DarkNet-53 YOLO v3 608 × 608 59 106
6. 2-stage Faster RCNN ResNet50 640 × 640 25.6 50
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size. Hourglass Network module is vast but produces the top keypoint 
estimation performance. Hourglass network looks like a stack in which it 
downsamples the input by four multipliers, subsequently by two series of 
hourglass modules, as shown in Figure 4.

In this model, the size of bounding box can be fixed adaptively through 
Equation (1) where (TLx, TLy) and (BRx, BRy) represents coordinates of top 
left corner of pixel i and coordinates of bottom left corner of pixel 
i respectively. Let j be the middle region of bounding box in which (MTLx, 
MTLy) represents coordinates of top left corner of middle region j and 
(MBRx, MBRy) represents coordinates of bottom right corner of middle 
region j. 

MTLx¼
ðpþ1ÞTLxþðp� 1ÞBRx

2p

MTLy¼
ðpþ1ÞTLyþðp� 1ÞBRy

2p

MTLx¼
ðp� 1ÞTLxþðpþ1ÞBRx

2p

MTLy¼
ðp� 1ÞTLyþðpþ1ÞBRy

2p

8
>>><

>>>:

(1) 

where p is odd value used to find the scale of the middle region j.
A Hougleass104 backbone network applies to the cascade corner pool-

ing and center pooling to outcome two center keypoint heatmaps and 
corner heatmaps, respectively. The abounding box is detected via embed-
ding and offsets. In CenterNet modules, center pooling finds the max-
imum value of feature maps’ vertical and horizontal directions that detect 
rich and best recognizable visual patterns. In contrast, corner pooling 
determines the top deals on the boundary directions of feature maps to 
find corners that overcome corners at external objects. Heatmap denotes 
keypoints location and allocates score. Embedding finds whether corners 
are from similar things and offsets realize to map the corners again from 
its heatmap to input. Reddy Pailla, Kollerathu, and Chennamsetty (2019) 
carried out CenterNet Hourglass 104 implementation for object detection 
on low-resolution and noisy aerial images and achieved better accuracy 
compared to YOLOv3.

Figure 4. Design of deep neural network model of CenterNet Hourglass.
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SSD EfficientDet
SSD (Single Shot Multibox Detector) is aimed at real-time object detection. 
A significant characteristic of this network is the utilization of multiscale 
convolution layers attached with feature maps produced by the backbone 
network model. It results in integrated detection of bounding boxes and 
confidence score of existence labels in those boxes; subsequently, a non-max 
suppression is used to generate the resultant object detection. An enhanced 
SSD was implemented on UAV based object detection in the railway scene for 
providing security (Yundong et al. 2020).

VGG16 (Visual Geometry Group) is the backbone model of original 
SSD but its author said other neural network model can also be utilized as 
a backbone network. Recently, compared to VGG16 many other deep 
neural network models have been achieved better performance. Since 
this paper concentrates on real-time railroad obstacle detection, accuracy 
and prediction time is concerned more. Based on this context, three 
models such as EfficientDet, MobileNet and ResNet50 were executed as 
its backbone models (Figure 5) and the detail are given in the later 
subsections.

EfficientDet is a deep neural network for object detection offered by 
Google (Tan, Pang, and Le 2020); which comprises of feature extraction 
network, i.e. EfficientNet (Tan and Le 2019), a weighted bi-directional 
feature pyramid network (BiFPN), depth and image resolution of any 
model, compound scaling technique that improves performance through 
scaling width, and prediction network for identifying bounding boxes. In 
this study, EfficientDet is implemented as a backbone model, whereas 
SSD layers are used for railroad obstacle detection (Figure 6).

Figure 5. Design of deep neural network model of SSD.

Figure 6. Design of deep neural network model of SSD EfficientDet.
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BiFPN considers P3 to P7 features from the efficient net and repetitively 
operates bottom-up and top-down multifeature fusion in this network. 
Significant levels involved in BiFPN is the fusion of fast-normalized fusion 
and bidirectional cross connections which is defined in the Equation (2): 

Pout
5 ¼ Conv

w01:Pin
5 þ w02:Pin

6 þ w03:Resize Pout
4

� �

w01 þ w02 þ w03 þ ε

� �

(2) 

Where wi≥ 0 is weight, =0.0001 is a minor value to prevent numerical varia-
tion, Conv is a convolutional operation for generating feature maps and Resize 
is either upsampling or down sampling process for resolution matching. 
Bounding Box model depth (channel) and width can be calculated using the 
following Equation (3): 

Dbox pred ¼ 3þ
;

3

� �

; Wbox pred ¼ 64� 1:35;
� �

(3) 

Where ; ¼ 0to2in this study which represents levels of the model. After that, 
these features are passed to the box/class net for generating bounding box and 
object class predictions. EfficientDet achieves fewer parameters compared to 
other state-of-art algorithms with better accuracy and efficiency. It is a family 
of deep neural network models (from d0 to d7) showing a similar structure at 
various model size scales. In the context of this study, four EfficientDet models 
(D0, D1, and D2) with varying input sizes were implemented for low-altitude 
railroad obstacle detection.

SSD MobileNet
MobileNet is a deep neural network that utilizes depthwise separable convolu-
tions to construct a lightweight deep learning model (Howard et al. 2017). 
Depthwise separable convolutions lead to nine times lesser amount of work 
compared to other neural networks with equal accuracy. In this study, 
MobileNet V1 and MobileNet V2 are implemented as backbone along with 

Figure 7. Design of deep neural network model of SSD MobileNet.
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SSD object detection algorithm. In MobileNet V1, the depthwise separable 
convolution layer is divided into depthwise convolution and 1 × 1 pointwise 
convolution. After each convolution layer, batch normalization and relu6 are 
treated, followed by the global average pooling layer and the complete con-
nected classification layer are processed (Figure 7).

Equation 4 defines a filter used for feature processing as per input depth 
(channel) involved in depthwise convolution. Nth channel of filtered out-
put feature O is produced by nth kernel in F is applied to the nth depth 
in K. 

Of ;k;n ¼
X

i;j
Fi;j;n � Kfþi� 1;j� k;n (4) 

where F is the depthwise convolution filter of size DF×DF×N in which DF 
represents filter size supposed to be square and N denotes number of input 
depths.

On the other hand, in MobileNet V2 (Sandler et al. 2018) has an expansion 
layer, depthwise convolution layer and projection layer executed under resi-
dual connection. In version 1, the pointwise convolution layer retained the 
same number of layers or doubled it. In contrast, in version 2, with the 
execution of the projection layer, the number of channels size get lesser. In 
(Suharto et al. 2020), SSDMobileNet V1 is executed for detecting types of fish 
with better accuracy rate, and in (Chiu et al. 2020), MobileNet-SSD V2 is 
implemented for object detection with better performance.

SSD ResNet50
Residual Networks with 50 Layers (ResNet50) hold the idea of skipping 
blocks of convolution layers using skip connections (He et al., 2017). The 
ultimate aim of deep neural networks is to learn deeper features to resolve 
complex tasks with high accuracy and speed. Of course, while training, all 
the layers learn high or low-level features, but in the residual network, the 
model learns residual. In residual block, input x is added as a residue with 
the outcome of weight layers, and Relu activation is carried out in between 
these layers. Building block of residual network can be defined using the 
Equation 5: 

O ¼ F I; Wif gð Þ þ I (5) 

Where I and O are the input and output values of the considered layers. Wi 
denotes weight carry at each process and the function F I; Wif gð Þ denotes the 
feature mapping to be learned at residual process.

In this study, SSD with ResNet 50 v1 (also known as RetinaNet) is used for 
railroad obstacle detection trained on COCO dataset with input images for 
training scaled to 640 × 640 (Figure 8, Figure 9). There are three structures 
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associated with residual network i.e., with layers of 50, 101 and 152. The 
reason is to choose resnet50 for this study, computational complexity of resnet 
152 is 3.1 times larger than resnet 50 and also the top five accuracy rate varies 
only by 0.7%. Henceforth, ResNet50 is used as backbone model for SSD 
obstacle-detection algorithm.

YOLOV3
This is one of the most familiar models of object detection techniques. 
The reason is that it applies for only one forward pass on the whole image 
and predicts bounding boxes and class probabilities. Internally, YOLO 
(You Only Look Once) is divided into feature extraction and feature 
detection (Redmon and Farhadi 2018). The difference in the previous 
versions of YOLO can be noted in the Feature Extraction part and 
accomplishes significant outcomes, especially on low-altitude aerial data-
sets. Here, the improvisation is made by combining the processes of 
YOLO V3 and Darknet-53. Equation 6 defines the prediction of bounding 
box in image using YOLOv3 model. 

bbi ¼ ε oið Þ þ tli
bbj ¼ ε oj

� �
þ tlj

bbw ¼ aw:eow

bbh ¼ ah:eoh

(6) 

Figure 8. Design of deep neural network model of SSD ResNet50.

Figure 9. Design of deep neural network model of YOLOv3.
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Where, bbi; bbj; bbw; bbh are the center coordinates, width and height of the 
prediction results. tl and tl are the top left coordinates. oi,oj,ow,oh are the 
output of the model and awandah denotes bounding box anchor 
dimension.

Darknet-53 is nothing but the number of layers present in which is 53. 
These layers are stacked with the detection head consisting of another 53 
layers, which sums up to 106 layers – the overall fully convolutional layers 
present. The Feature Detector will put in 1 × 1 kernel on feature maps of three 
diverse sizes at three various locations. In (Tan, Pang, and Le 2020), UAV- 
YOLO was proposed for object detection on low altitude aerial images where 
darknet structure is improvised by adding few convolution layers at the early 
channels, which enriches spatial information.

FasterRCNN
Faster RCNN (Faster Region-based Convolutional Neural Network) combines 
two modules: Fast RCNN, a detector, and RPN that gives the region proposals 
(Ren et al., 2015). Images taken as input for the model are passed through the 
convolutional networks that produce the feature maps from each image. Then 
the Region Proposal Network (RPN) is put over the established feature maps 
and got the object proposals. Also, the RPN generates the anchors for the given 
input image and ranks them based on the probability that it contains an object.

The RoI (Region of Interest) pooling layer brings all the object proposals 
obtained from the previous layer to the same size. It is moved to a fully 
connected layer that finally classifies and predicts the resultant bounding 
boxes for the image given as input. In Faster RCNN, bounding box regression 
loss ðLlocÞ for image can be computed as summation of all foreground anchors 
regression losses Lkð Þ which is defined in Equation 7: 

Llo ¼
X

k 2 all
foreground

anchors

Lk (7) 

where, 

Lk ¼
X

x 2 w; h; i; j smoothL1ðkpredicted
x � ktarget

x Þ (8) 

smoothL1 xð Þ ¼
ε2x2

2 ij j< 1
ε2

ij j � 0:5
ε2 else

�

(9) 

The above Equation 8 illustrates foreground anchor loss calculated by 
subtracting predicted and target coefficients in which w, h, i, and 
j denotes width of box, height of box and coordinates of top left corner 
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respectively. Equation 9 defines smooth L1 loss which is mostly used as 
loss function in the models implemented in this study where ε is selected 
as arbitrarily. Some interesting Faster RCNN implementations are avail-
able (Li et al. 2018). It was applied for low-resolution aerial images and 
detecting birds through super and very super resolution CNN techniques. 
ResNet50 is a backbone model in this study, whereas FasterRCNN is used 
for railroad obstacle detection (Figure 10).

Table 2 illustrates the hyper-training parameters of various deep neural 
network models used in this study. Learning rate was chosen as 1e-3 for 
centernet as well as yolov3 and 8e-3 for other models; likewise, momentum 
was set as 0.9 to all models. The batch size is assigned as two that refer to the 
number of sample data transmitted throughout the network model. 
Advantage of using mini-batch size requires less memory and train faster. 
Steps hold a value that describes how many numbers of steps need to be 
completed in a series order to create a model checkpoint for exporting 
inference. Optimizers are used to reduce the losses and maximize the 
efficiency of the outcome by changing the properties of models, such as 
learning rate and weight. All models used momentum optimizer except 
centernet that used Adaptive Moment Estimation (Adam) optimizer. Due 
to variation in loss and accuracy with epochs, the optimizers were chosen for 
each model. Decay (weight decay) is mainly used to prevent the weights 
from increasing too large, so after each update, the weights are multiplied by 
0.99. The warmup learning rate is .0001, which defines the maximum reach 
of the learning rate afore beginning to drop.

The overall loss function is a weighted sum of classification loss and 
localization loss, where classification loss is the loss in naming class labels to 
predicted bounding boxes, and localization loss identifies the gap between the 
ground truth boundary box and predicts boundary box. Additionally, smooth 
L1 loss is inferior for accurate obstacle localization. At first, the image is 

Figure 10. Design of deep neural network model of FasterRCNN.
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divided into a grid of cells and finds the grid cell that has the center of the 
image, and for that grid, it predicts the bounding boxes and class probabilities 
of classes to which it belongs. Then, the results of each probability of all the 
possible classes in the object are aggregated using Non-Maximum Suppression 
(NMS) based on the threshold of the objects such as score and you. This 
threshold is nothing but set the minimum confidence score that is acceptable 
for detection.

Algorithm

The algorithm for training and evaluating aerial railroad images for obstacle 
detection using deep neural network models is presented as follows:

Evaluation Metrics

Four combinations of values are computed to measure the performance of 
a deep neural network model in predicted classes of test data with actual 
classes. This evaluation is based upon the computation of the confusion matrix 
of six classes for all the deep neural network models considered in this study. 
The confusion matrix is a table that defines the performance of the railroad 
obstacle detection model on test data where all four values are identified.

The values are True Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN). TP value signifies the number of correctly detected 
obstacles on the railroad. FP value represents the number of wrongly detected 
obstacles in the railroad. FN value mentions the number of missing obstacles or 
undetected obstacles by the detection model. TN value refers to the number of 
nonobstacles that are correctly identified as nonobstacles. Additionally, Precision 
(Pr), Recall (Rc), F1-Score (F1), and Accuracy (Acc) are obtained from the 
confusion matrix and calculated as follows (Equation 10 to Equation 13): 

Algorithm 1 Obstacle Detection – Training and Evaluation on Aerial Railroad Images
Input: Aerial railroad images
Output: Dangerous railroad obstacle detection results
1: Data Augmentation ← Expand the images by ImageDataGenerator Class
2: RODD dataset ← Data annotation through bounding box creation and labeling
3: Train and Test images ← Split the total images (original + augmented) in the ratio of 80:20
4: Generated CSV file ← From training and testing images
5: Generated TFrecord files ← From csv file, classes file, training and testing images
6: Generated Labelmap ← Create id and name for each class as an item
7: Parameter Adjustments ← Fine tune arguments of model configuration file
8: Trained model ← Input pipeline configuration file into model
9: Evaluated training model ← mAP, AR, classification loss, localization loss and total loss
9: Export inference graph ← After successful completion of training
10: Railroad obstacle detection results ← Input the test images with obstacles into the trained model
11: Evaluate the railroad obstacle detection results ← Classification metrics such as TP, FP, TN, FN, Pr, Rc, F1- 

Score, Acc, IoU and DC

e2018184-1502 R. S. RAMPRIYA ET AL.



Pr ecisionðPrÞ ¼
TP

TP þ FP
(10) 

RecallðRcÞ ¼
TP

TP þ FN
(11) 

F1 � ScoreðF1Þ ¼
2� Pr ecision� Recall

Pr ecisionþ Recall
(12) 

AccuracyðAccÞ ¼
TPþ TN

TP þ FPþ FN þ TN
(13) 

The other performance metrics considered in this study for calculating the 
accuracy of an obstacle detector on RODD are Intersection over Union (IoU) 
and Dice Coefficient (DC). The predicted bounding box can be evaluated 
using IoU as the ratio of the overlapping area and predicted area to the 
complete area. The IoU is between 1 (perfect overlap) and 0 (no overlap) 
(Breton 2019). Nevertheless, in railroad obstacle detection task, IoU could be 
defined as follows: (Equation 14) 

Figure 11. Illustration of IoU metric in which BBGT are colored in green and BBP are colored in red.
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IoUðGTB; PBBÞ ¼
α BGT \ BBPj j

α BGT [ BBPj j
¼

TP
TPþ FPþ FN

(14) 

Where α is the set counting quantity, i.e. area, GTB denotes bounding box of 
ground truth and BBP represents bounding box of prediction.

The following are the rules applied to each aerial railway image to calculate 
the IoU: (1) TP: BBP associated to BGT has an IoU greater than threshold (2) 
FN: No match in BGT (3) IoU between BBP and BGT is less than threshold 
and (4) TN: No BGT and BBP. This is illustrated in Figure 11. Also it is 
characterized the deep learning models with various threshold values such as 
0.5, 0.6, and 0.9. The IoU threshold values of the considered deep learning 
models are given in Table 2. 

DiceCoefficientðDCÞ ¼
2TP

2TP þ FPþ FN
(15) 

DC is used to find how similar the obstacles are from actual to predicted 
image, i.e. it is an overlap-based metric between the actual image and predicted 
image. If the overlap region is similar to the union region, it leads to correct 
classification and comes under the concept of f1-score. DC is defined in 
Equation 15.

Results and Analysis

In this study, the experimental results evaluated the real-time obstacle detec-
tion on aerial railroad images using nine deep neural network models. The 
training was implemented through nine different models on a total of 2002 
images in the Real Obstacle Detection Dataset (RODD). According to the best 
practices of object detection models and cross-validation principle (ML Crash 
Course at Google, 2020), the training and testing dataset is split up as 80–20 
among the total dataset (Li, Zhao, and Zhou 2019). Especially in the RODD, 
1602 labeled images are in the training folder, and 400 images are in the test 
folder. Table 3 illustrates the quantitative evaluation metrics discussed in 
section 2.5 for training the model for railroad obstacle detection of various 
models.

Table 3. Comparison of outcomes using various assessment metrics.
Sl. no. Model Pr (%) Rc (%) F1 (%) Ac (%) IoU(%) DC(%) Time(s)

1 CenterNet Hourglass104 72.46 75.75 71.31 72.00 56.82 71.24 10800
2 SSD EfficientDet D0 82.51 83.77 82.79 82.75 70.82 82.79 7200
3 SSD EfficientDet D1 75.37 73.19 70.88 71.75 45.72 58.88 7200
4 SSD EfficientDet D2 76.79 78.55 76.67 77.25 62.93 76.67 7200
5 FasterRCNN 85.16 83.61 80.39 84.75 72.27 83.04 10800
6 SSD MobileNet V1 87.67 85.40 85.55 86.50 75.07 85.55 7200
7 SSD MobileNet V2 95.89 97.22 96.41 96.75 93.18 96.41 10800
8 SSD ResNet50 83.56 84.52 83.66 83.75 72.05 83.66 10800
9 YOLOv3 70.68 73.64 70.88 70.83 55.79 70.87 14400
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Based on the table, the SSD MobileNet model produced a greater success 
ratio, especially SSD MobileNet V2 with input size 320 × 320. On the other 
side, YOLOv3 generated lower accuracy compared with other models. SSD 
MobileNet V2 model precision was computed as 95.89%, recall as 97.22%, f1- 
score as 96.41%, accuracy as 96.75%, intersection over union as 93.18 and dice 
coefficient as 96.41%. Particularly accuracy were acquired as 72% (CenterNet 
Hourglass), 82.75% (SSD EfficientDet d0), 71.75% (SSD EfficientDet d1), 
77.25% (SSD EfficientDet d2), 84.75% (Faster RCNN), 86.50% (SSD 
Mobilenet v1), 96.75% (SSD MobileNet v2), 83.75% (SSD ResNet50), and 
70.83% (YOLOv3).

Figure 12 shows the confusion matrices of all deep neural network models 
in this study, representing the accuracy of railroad obstacle detection of 
individual classes. In this study, six classes, such as barrel, boulder, branch, 
iron rod, jerry can, and the person, is considered and evaluated through 
a confusion matrix. The values in confusion matrices represent the four 
combinations of values such as TP, FP, FP, and TN, which are used for 
calculating precision, recall, f1-score, accuracy, intersection over union, and 
dice coefficient. SSD MobileNet V2 scores high TP values in the railroad 
obstacle detection represented as green color code among all models. For 
instance, considering a class barrel in YOLOv3 in which its TP value is 

Figure 12. Confusion Matrices of various deep neural network models used in this study where 
SSD MobileNet V2 scores high TP values in railroad obstacle detection, represented as green color 
code.
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scored as 18, FP value is scored as 9 (3 + 2 + 1 + 3), FN value is one, and TN 
value is 67 (11 + 9 + 15 + 17 + 15). It means 18 barrel obstacles are correctly 
identified from the RODD dataset, 9 barrel obstacles are wrongly detected 
on the railroad, 1 barrel obstacle is not detected by this model, and 67 
obstacles other than barrel are correctly identified as its respective railroad 
obstacle classes.

Similarly, for all the classes, combinations of values are calculated. In 
this, YOLOv3 scores very few TP values and more FP values for each class. 
That is why its accuracy value is significantly less compared to other 
models. The high accuracy scorer SSD MobileNet V2 has more TP values 
and fewer FP values for an individual class. Thus, scoring more TP values 
and less FP, FN values lead to better accuracy of the railroad obstacle 
detection model. Table 4 illustrates metric values such as Pr, Rc, F1, IoU, 
DC, Acc, macro average, and weighted average of assessment on various 
classes to identify the best deep neural network model for railroad obstacle 
detection.

In Table 4, SSD MobileNetV2 holds almost the expected values of all the 
classes especially class IronRod meets 100% values in all the metrics and 
achieves a higher accuracy value of 96.75% than other models. Other than 
the MobileNet model, the next highest metric value reached for all the classes 
is Faster RCNN. This two-stage detector scores 84.75% accuracy, and all the 
classes scored accepted reasonable values. Likewise, the least metric values are 
produced by the model YOLOv3 for all the classes compared to other models 
with an accuracy of 70.83%. In few classes of the models, when precision scores 
100%, its recall value is only 10.34%, and f1-score is 18.75%, reflecting in the 
value of IoU and DC with the same values.
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Figure 13. Performance of mAP on RODD using deep neural network models in this study.
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Mean Average Precision (mAP) is used to evaluate railroad obstacle detec-
tion accuracy. On the RODD dataset, the map results of deep neural network 
models used in this study are shown in Figure 13. The AR (Accuracy Recall) 
and mAP values in IOU = 0.5 of MobileNet V2 are almost 2% higher than 
FasterRCNN and nearly 30%–50% higher than YOLOv3. Even further severe 
test cases under IOU from 0.50 to 0.95 and IOU = 0.75, the mAP and AR 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 14. Classification loss, Localization loss, and Total loss where saffron color denotes training 
loss against steps and light saffron color represents test loss: (a) CenterNet Hourglass, (b) SSD 
EfficientDet, (c) Faster RCNN, (d) SSS MobileNet, (e) SSD ResNet50, and (f) YOLOv3.
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values of MobileNet V2 is 2% higher than Faster RCNN and 20%–50% higher 
than YOLOv3. Practically, MobileNet V2 produces a higher success ratio in 
terms of mAP and AR when compared to all other models. Figure 8 also 
specifies that MobileNet V2 needs more improvements in detecting small 
objects than medium and large objects. In this case, all the models produce 
very few mAP and AR values. Hence, improvisation is required for detecting 
small objects by the deep neural network models used in this study.

The loss function is used to measure how better the trained deep neural 
network model is performed in predicting the expected railroad obstacle 
detection output. It computes the gap between ground truth and predicted 
outcome, and the optimizers try to reduce the model’s loss value near zero, 
which gives a better model. The graph of loss function mainly consists of 
classification loss, localization loss, and total loss of the railroad obstacle 
detection model considered in this study (Figure 14). In this graph, the 

(a) (b)

)d()c(

(e) (f)

Figure 15. Railroad obstacle detection using MobileNetv2: (a) Barrel obstacle detection, (b) 
Boulder obstacle detection, (c) Branch obstacle detection, (d) IronRod obstacle detection, (e) 
Jerrycan obstacle detection, and (f) Person obstacle detection.
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x-axis represents some steps taken for calculating loss, and the range of loss 
values is denoted in the y-axis. For instance, considering the classification loss 
graph of the SSD MobileNet model (Figure 14 – (d)), loss values range from 
0.9 to 0.3.

In this graph, in the beginning, the training loss value is 0.3 and suddenly 
rose beyond the 0.9 loss value. Still, after that, the classification loss graph 
gradually falls with minor ups that lead to the expected accuracy value. 
Likewise, localization loss and total loss values exist between 0.5–0.1 and 
1.6–0.6, respectively. However, the variation obtained between training and 
test loss reflects in the YOLOv3 model compared to other models. This may 
lead it to produce less accuracy value when compared to other models. It is 
observed that when the loss value touches 0, then the training attainment has 
been revealed on the test images. Except for CenterNet and YOLOv3, almost 
all the model’s loss values reaches 0.6, which leads to effective performance.

Since the MobileNet V2 model provided better accuracy than other models, 
Figure 15 shows railroad obstacle detection using SSD MobileNet V2 with 
a confidence score. The confidence score is the probability value of the 
bounding box that covers the obstacle. If the confidence score is less than 
the threshold, then the obstruction is not detected, and the detection falls on 
TN. For instance, in the YOLOv3 model, the threshold is set as 30%, so during 
testing, if the probability value is below 30%, then it is considered TN. In the 
below figure, obstacle barrel is detected with 71% confidence score, class 
boulder is seen with 74% confidence score, branch obstacle is found with 
78% confidence score, iron rod obstacle is detected with 75% confidence score, 
obstacle jerrycan is seen with 79% confidence score, and person class is found 
with 73% confidence score.

A robust obstacle detection deep neural network model has to be estab-
lished for the railroad application in complex environmental situations. One 
of the major challenges involved in this application is light condition. Four 
different light illumination effects, such as the original image, are used on 
images to test the obstacle detection performance during the influence of the 

Original image Light 85% Light 50% Light 20% 

Figure 16. Railroad obstacle detection results on different light conditions.
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light condition. Light effects are original image, light 85%, light 50%, and light 
20%. Figure 16 illustrates the testing outputs for the chosen lighting conditions 
using SSD MobileNet V2.

(a) )b(

Figure 17. (a) Overlapping bounding boxes and (b) misclassification.
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Barrel Boulder Branch Person IronRod Jerrycan 

(a)

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

Figure 18. Railroad obstacle detection on all the six classes using deep neural network models 
consider in this study: (a) CenterNet Hourglass 104, (b) SSD EfficientDet d0, (c) SSD EfficientDet d1, 
(d) SSD EfficientDet d2, (e) Faster RCNN, (f) SSD MobileNet v1, (g) SSD MobileNet v2, (h) SSD 
ResNet50, and (i) YOLOv3.
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In the above figure, the obstacles are detected under various light conditions 
such as 85%, 50%, and 20%. Especially, light with 20% column contains 
jerrycan obstacle. Detecting a small obstacle in a low lighting area is 
a tedious one as the light value goes lesser and the image’s background turns 
darker. But in this environmental condition also the model performs well with 
good accuracy results. These light variations input images were generated 
using altering the values of the brightness range argument available in the 
Keras image generator class.

Non-max suppression suppresses the overlapping bounding boxes and 
displays a single bounding box that scores a high probability value. So to 
prevent such overfitting outcomes, it is suggested that the initial value of score 
threshold value 0 can be changed to the minimum value of 0.2, and your 
threshold can be reduced to a lower value. But even though the bounding box 
non-max suppression parameters such as score threshold and your threshold 
is fixed as appropriate in the tensor flow object detection model, Figure 17 (a) 
represents overlapping bounding boxes in railroad obstacle detection.

In this case study, non-max suppression parameters of all the models were 
adjusted to the required value and found that only three models like 
MobileNet, EfficientDet and YOLOv3, possess this issue. Other than these 
three models, all other models such as CenterNet Hourglass, Faster RCNN and 
ResNet50 supported nonmax suppression and produced nonoverlapping 
bounding boxes for the test images. The worried think is the best model of 
obstacle detection in this study comes under this issue. But the satisfaction is, it 
obtained only for few test images of the models. So a highly efficient method is 
needed for solving this overlapping, especially to the MobileNet models. On 
the other hand, the misclassification problem is there, which is required to be 
rectified since it leads to a false positive value and affects the model’s accuracy. 
Mainly this study considers obstacle detection on railroad aerial images using 
various deep neural network models. Figure 18 visually outlines some of the 
railroad obstacle detection on all the six classes using deep neural network 
models considered in this study. All the test aerial railroad images are acquired 
from RODD.

Conclusion

Accurate railroad obstacle detection is essential for effective and timely 
avoidance of accidents like derailments in railways. Existing manual mon-
itoring and sensors mounted on rail or train or somewhere nearby rails lack 
accuracy in obstacle detection particularly; replacing failure sensors or 
batteries is very hard at unmanned areas like a dense forest or highly 
elevated bridges. In this study, real-time UAV based low altitude railroad 
obstacles monitoring and data source collections were performed and 
expanded those images using augmentation. After that, annotation was 
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done for creating our own dataset RODD. All set, so the tensor flow object 
detection models’ configuration was followed by training various deep 
neural network models such as CenterNet Hourglass, EfficientDet D0, 
EfficientDet D1, EfficientDet D2, SSD MobileNetV1, SSD MobileNetV2, 
SSD ResNet50, Faster RCNN, and YOLOv3 was implemented successfully. 
Lastly, each model and class are assessed with various metrics such as 
precision, recall, accuracy, intersection over union and dice coefficient, and 
the influence of light conditions and limitations such as overlapping and 
misclassifications.

The experimental results illustrate that the models SSD MobileNet V2, 
Faster RCNN, and SSD ResNet50 performed better than other models with 
accuracy 96.75%, 84.75%, and 83.75%, respectively, all these models loss values 
reach 0.6 in that way signifying the success of the training. Since this study was 
implemented based on the latest tensor flow two object detection models, it 
took a reasonable time to train the model compared to existing models. It was 
also perceived that training model time for SSD MobileNet V1, Faster RCNN 
and SSD ResNet50 are similar. In short, it was understood that the SSD 
MobileNet V2 is the most appropriate model among the models used for 
detecting obstacles in the railroad. The obtained outcomes indicated that the 
latest tensor flow two object detection models could be used for real-time 
railroad obstacle detection.

The acquired results within the scope of this study illustrated that it is 
possible to detect the obstacles in the railroad using RODD. To overcome the 
limitations and increase the models’ performance, more datasets with diversity 
could be collected or by creating modifications in the deep neural network 
models. It is also possible to acquire even more effective results by using 
a high-end system with proper configuration. Additionally, it is believed that 
this study results and assessments will create necessary support to the related 
works and also to the researchers researching railroads, implementation of 
onboard obstacle detection using deep neural network models, fast obstacle 
detection and give alert to the railway station, obstacle detection at tunnels, 
etc.
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