
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Sparse based recurrent neural network long
short term memory (rnn-lstm) model for the
classification of ecg signals

Sampath A & Sumithira T. R

To cite this article: Sampath A & Sumithira T. R (2022) Sparse based recurrent neural network
long short term memory (rnn-lstm) model for the classification of ecg signals, Applied Artificial
Intelligence, 36:1, 2018183, DOI: 10.1080/08839514.2021.2018183

To link to this article:  https://doi.org/10.1080/08839514.2021.2018183

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 22 Jan 2022.

Submit your article to this journal 

Article views: 966

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.2018183
https://doi.org/10.1080/08839514.2021.2018183
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.2018183
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.2018183
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2018183&domain=pdf&date_stamp=2022-01-22
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2018183&domain=pdf&date_stamp=2022-01-22


RESEARCH ARTICLE

Sparse based recurrent neural network long short term 
memory (rnn-lstm) model for the classification of ecg 
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aKongunadu College of Engineering and Technology, Trichy, India; bGovernment College of Engineering, 
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ABSTRACT
In recent years, with the advancement of classical signal proces
sing approaches, numerous works have been performed on the 
automatic ECG detection schemes for the enhancement of the 
effectiveness of the identification of the type of ECG heartbeats. 
One common issue faced by the previous works is the complex
ity of signal processing. In order to resolve the computational 
and complexity issues of existing techniques of signal proces
sing, this research work introduces Sparse representation tech
nique for extracting feature. In this study, adaptive thresholding 
technique combined with Sparse-based Recurrent Neural 
Network – Long Short Term Memory (RNN-LSTM) model is 
employed for the classification of ECG signals. P-QRS-T peaks 
are identified by employing Adaptive thresholding technique. 
Statistical features are obtained for each signal and are 
employed in the process of dictionary learning of sparse decom
position. Sparse representations of the incoming ECG signals are 
used in training the RNN-LSTM network. The trained classifier 
will give a classified result on giving a test ECG input signal. The 
performance indices for the process of classification such as 
accuracy, precision, error rate, sensitivity, and F-score are calcu
lated. The performance of the proposed Sparse based RNN- 
LSTM classifier is found to be better in comparison with the 
existing RNN classifier, K-Nearest Neighbor (K-NN) classifier, and 
Decision Tree (DT) classifier. Furthermore, for validating the 
performance of the proposed framework, this approach is 
tested experimentally with real-world raw ECG data acquired 
using the AD8232 single-lead ECG sensor. The performance of 
the proposed experimental setup is compared with the existing 
state-of-the-art approaches.
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INTRODUCTION

Electrocardiogram (ECG) signal is the morphological data of the cardiac elec
trical activity, which gives significant details about the condition of the heart. 
There are several kinds of heart diseases and each kind corresponds to a pattern 
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of arrhythmia, and it is feasible to detect and differentiate its type. Detection of 
ECG arrhythmias is thus important for treating the patients diagnosed with 
heart diseases and for providing the appropriate treatment (Das and Ari 2014).

Regardless of the easiness of acquiring the data, there are still challenges ahead 
of us in order to extract reliable information from biomedical signals. Each and 
every beat of the heart in the cardiac cycle displays the time evolution of the 
electrical activity of the heart, which is comprised of distinctive electrical patterns 
of depolarization–repolarization of the heart (Kiranyaz, Ince, and Gabbouj 2015).

The major issue in the diagnosis of heart diseases using ECGs is that an 
ECG signal obtained for one person can be different from another. Therefore, 
the ECG recordings for a similar disease can differ from patient to patient. In 
addition to this, two dissimilar diseases can approximately have similar char
acteristics on an ECG signal. Extraction of those exact characteristics (fea
tures) will result in the accurate classification of the ECG signal (Berkaya et al. 
2018). The extraction of features plays a vital part in the pattern classification, 
particularly in the classification of images or signals. Either the transformed or 
the segmented ECG data or the raw data can be subjected to feature extraction 
(Li and Zhou 2016).

However, because of the huge quantity of data and/or the need for online 
classification present in these situations, additional requirements arise con
cerning the complexity of signal processing schemes while incorporating 
classification algorithms.

Our Contribution

For this work, sparse representation-based feature extraction is being exam
ined. Unsupervised learning is used in this form of data representation to 
produce appropriate data representations that may be used for classification, 
detection, and prediction. Sparse representation removes the extraneous prop
erties of the incoming data while maintaining the useful and vital character
istics. The removal of extraneous data reduces both the complexity and the 
computational challenges of the operation. As a result, for the categorization 
of ECG signals, a Sparse-based Recurrent Neural Network – Long Short Term 
Memory (RNN-LSTM) model is presented in this research. The study will 
focus on five common forms of arrhythmias: Normal Sinus Rhythm (NSR), 
Atrial Fibrillation (AFIB), Atrial Flutter (AFL), rhythms with Premature 
Ventricular Contractions (PVC), and Supra Ventricular Tachy Arrhythmia 
(SVTA) (SVTA). To reduce time consumption and extend memory, RNN and 
LSTM are combined in the classification of ECG data. This deep learning 
classification model can analyze massive amounts of data in a short amount of 
time. The goal of the proposed research project is to lessen the complexity and 
computational problems that currently exist in ECG categorization systems. 
The research project’s key goals are as follows..
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● To perform PQRST peaks detection efficiently using Adaptive 
Thresholding technique

● To perform the Sparse Feature Extraction based on Sparse Decomposition 
technique

● To classify the various types of ECG signals using RNN-LSTM classifier 
model

● To improve the performance metrics such as Accuracy, Precision, 
Sensitivity, Recall, and F-score of the ECG classifier model

● To validate the performance of the proposed framework in a real-time 
application setup, where ECG data are recorded using the AD8232 single- 
lead sensor.

The proposed Sparse based RNN-LSTM classifier model eliminates the irre
levant data, avoids loss of information of the signals, reduces the computa
tional complexity, and thereby detects the class of the ECG signal efficiently. 
Hence, this model can be employed in ECG monitoring systems.

The rest of the research paper discusses the related previous works, working 
of the proposed method of ECG classification, the results and discussion, the 
conclusion for the work and the future scope of work.

LITERATURE REVIEW

There have been several methods for generic and fully automatic ECG classi
fication based on signal processing techniques, such as frequency analysis, 
filter banks and wavelet transform, Artificial Neural Networks (ANNs), sta
tistical and heuristic schemes, support vector machines, Hidden Markov 
Models, and a mixture of state-of-art methods. Few of the related works 
proposed previously are surveyed in this section.

Übeyli (2010) proposed RNN classifier for detecting the four types of ECG 
signals. In this approach, the final classification decision was made based on 
a two-level approach. Features extraction technique which extracts Lyapunov 
exponents, followed by training RNN with Levenberg–Marquardt algorithm. 
Four types of arrhythmias are taken for this study, namely, normal, atrial 
fibrillation, congestive heart failure, and tachyarrhythmia. This method 
emphasized the importance of Lyapunov features in ECG signals. Accuracy 
of classification is found to be low because of the short term dependencies of 
the RNN classifier model.

In the spectral domain analysis, such as Fourier Transform (FT) as 
proposed by Gothwal, Kedawat, and Kumar (2011), the frequency com
ponents of an input signal are generated . FT and Fast Fourier 
Transform (FFT) help in the extraction of features from the ECG 
signals. A total of six types of arrhythmias are considered for the 
work, they are, Bradycardia, Tachycardia, Incomplete Bundle Branch 
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Block, Supraventricular Tachycardia, Ventricular Tachycardia, and 
Bundle Branch Block. ANN was employed for classifying the ECG 
signals based on the FT features extracted. However, it lacks in offering 
any details associated with the time of occurrence of these components.

Another spectral domain analysis is the Wavelet Transform (WT) as 
presented by Sahoo et al. (2017), which resolves the issue of the constant 
size of the window by rendering shorter windows at high frequencies and 
lengthier windows at low frequencies. This makes the WT appropriate for 
analyzing non-stationary signals by yielding time–frequency features. The 
extracted features are used for classifying four types of arrhythmias, namely, 
right bundle branch blocks (RBBBs), left bundle branch blocks (LBBBs), 
Paced and normal beats, using Multi-Layer Perceptron (MLP), and 
Support Vector Machine (SVM). However, the challenge in WT is the 
optimal choice of sampling frequency and mother wavelet in the processing 
of signal using WT.

Soorma, Singh, and Tiwari (2014) described the Hilbert Huang 
Transform (HHT) method of extracting features from the normal and 
abnormal ECG signals. The features being extracted are duration, ampli
tude, pre-gradient, and post-gradient. One drawback of HHT is that the 
processed output is affected very much by the noise associated with the 
signal.

Martis et al. (2013) proposed principal component analysis (PCA) 
method for the extraction of Higher-Order Spectral features (HOS fea
tures) of the ECG test signals. HOS features are mainly extracted to get 
the dynamic and non-linear characteristics of the ECG signals. In this 
work, five types of ECG signals (RBBB, LBBB, ventricular premature 
contraction, atrial premature contraction, and normal) are classified with 
the help of two different approaches, three-layer Feed Forward Neural 
Network (FFNN) and Least Square – SVM (LS-SVM), that use PCA 
method of feature extraction. For applying PCA on the data, the data 
must be standardized in a proper manner. Failing to do which, will result 
in the failure to extract optimal components.

Martis et al. (2014) proposed four different feature extraction schemes for 
the identification of three classes of ECG beats: AFIB, AFL, and normal. The 
schemes that are investigated for features extraction are PCs of Discrete 
Wavelet Transform (DWT) coefficients, PCs of Discrete Cosine Transform 
(DCT), Independent Components (ICs) of DWT coefficients, and ICs of DCT 
coefficients. Three types of classifiers were employed for comparative explora
tion namely, K-Nearest Neighbor (KNN), Decision Tree (DT), and ANN. 
Discrete Cosine Transform (DCT) combined with Independent Component 
Analysis (ICA) and KNN exhibited better performance. This method ensures 
reliability for the automated system of diagnosis, but the KNN classifier does 
not work effectively for larger datasets.
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Shadmand and Mashoufi (2016) employed a Block-based Neural Network 
for classifying five types of heartbeats. The NN is determined by passing the 
signals through the blocks of the network. The weights of the NN are opti
mized by the PSO during the training phase.

Elhaj et al. (2016) classified five types of ECG signals (fusion, non-ectopic, 
ventricular ectopic, supra-ventricular, unclassifiable, ectopic, and paced) 
using the combination of linear and non-linear features. Features like 
higher-order cumulants and statistics were considered. For non-linear fea
tures reduction, ICA method was employed; whereas for linear features 
reduction, the PCA method was employed. The dataset was tested using 
different neural network classifiers like SVM, and NN with 10-fold cross- 
validation. The method requires improvements computationally since the 
extraction of linear and non-linear components needs the data to be pre- 
processed in a proper way.

Pyakillya, Kazachenko, and Mikhailovsky (2017) presented deep learning 
architectures for classifying four types of ECG beats, namely, very noisy, 
another kind of rhythm, arrhythmic, and normal sinus rhythm. The initial 
layers of the neural network are the 1D convolutional NN with Fully 
Connected Network (FCN) layers comprising of convolutional neurons acting 
as feature extractors. The fully connected layers are the last layers, which make 
the final decision of classification. One main drawback of convolutional net
works is that it performs significantly slow.

Zhai and Tin (2018) dealt with the classification of supraventricular ectopic 
beats (SVEB or S beats) and VEB data taken from MIT-BIH arrhythmia 
database using Convolutional Neural Network (CNN) model. The ECG sig
nals were initially transformed into 2D inputs i.e., dual beat coupling matrix. 
The transformed matrices were sent as inputs to the CNN classifier. The one 
thing that lags in this proposed work is the robustness of the classifier.

Beritelli et al. (2018) proposed a novel algorithm of training to provide an 
efficient solution for NN training in ECG classification. This work employed 
a Radial Basis Probabilistic Neural Network (RBPNN) for classification. The 
work aimed at improving the generalization capability of a neural network by 
preserving the precision and sensitivity of detection. However, PNN is com
putationally slower and requires more space of memory to store the NN 
model.

Sánchez and Cervera (2019) proposed ANN for detecting the variabilities of 
ECG beats. The data considered for the classification is AF dataset from the 
PhysioNet/CinC challenge 2017. The proposed ANN is a hybrid of FFNN and 
CNN. ECG beats were given as images for training the CNN. Convolutional 
features are extracted and given for training the FFNN classifier. 
Transformation into images might lose a few important features and resolu
tion of the image could be one of those reasons. Hence, the suggested classifier 
is found to have low reliability.
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Kumar R. and Dhiman G. (2021) proposed linear programming that can be 
represented as straight line variables. This method will not be employed in 
real-life scenarios with non-linear parameters or parameter values. 
Complexity and resources aren’t taken into consideration. Linear 
Programming System Advantages Linear programming is usually used when 
the parameters and best solution are both static and can be represented as 
straight line variables. In real-world scenarios with non-linear parameters or 
parameter values, this strategy will not be applied.

Emperor Penguin Optimizer (EPO) is a unique optimization technique 
proposed by Dhiman G. and Kumar V. (2021) that resembles the huddling 
behavior of emperor penguins (Aptenodytes forsteri). EPO’s major processes 
are to create the huddle boundary, calculate the temperature around the 
huddle, calculate the distance, and locate the effective mover. These proce
dures are represented analytically and implemented on 44 well-known bench
mark test functions.

According to Basant et al.(2021) Diagnostic approaches for SARS-CoV-2 
with different throughput, batching capacity, infrastructure requirements, 
analytical performance, and turnaround times ranging from a few minutes 
to many hours. To aid in making an informed decision and quick public health 
responses, these characteristics should be addressed when choosing an accu
rate and rapid diagnostic procedure.

Chatterjee I. (2021) has gone a step farther in evaluating the need for patents 
in the present, while also underlining the limits that the country would face if 
patents for CRI and AI were not awarded. In summary, the topic of missed 
opportunities is extensively covered.

The advent of computational intelligence based metaheuristic optimization 
algorithms has paved a way for the computers to learn from experiences. These 
algorithms are applied majorly in solving optimization problems like optimal 
tuning of system parameters, optimal selection of features, etc. Few such latest 
algorithms are discussed as follows.

Emperor Penguin Optimizer (EPO) (Dhiman and Kumar 2018) provided 
a mathematical formulation of huddling behavior of emperor penguins to 
solve optimization problems. The main functions include generation of hud
dle boundary, huddle temperature computation, distance calculation, and the 
estimation of effective mover. Seagull Optimization Algorithm (Dhiman and 
Kumar 2019) proposed the mathematical formulation of migration and 
attacking behavior of seagulls to resolve optimization problems. This algo
rithm was developed to emphasize exploration and exploitation behavior in 
the defined search space. Sooty Tern Optimization Algorithm(Gaurav and 
Kaur 2019) mathematically formulated the migration and attacking behavior 
of sooty tern seabirds to solve the problems of optimization. This algorithm 
focused to emphasize the exploration and exploitation behavior in the defined 
search space.

e2018183-1462 S. A AND S. T. R



A binary model of Orientation Search Algorithm (OSA) called Binary OSA 
(BOSA) (Dehghani et al. 2019) proposed a behavioral modeling of orientation 
game played by the players of OSA with highly ability to solve the problems of 
optimization. Similarly, Tunicate Swarm Algorithm (Satnam, K., et al., 2020) 
modeled the jet propulsion and swarm behaviors of tunicates to resolve the 
optimization problems effectively. Multi-leader optimizer (Dehghani et al. 
2020) was proposed with the mathematical modeling of the process of advan
cing multiple leaders as the memberguides of the population to obtain the 
optimal answer. A game-based optimization technique called Darts Game 
Optimizer (Mohammad et al. 2020b) was proposed with the modeling of the 
darts game to solve the optimization problem. The main objective is to get the 
players secure most possible points in their chances.

A novel spring search algorithm (Mohammad et al. 2020a) was proposed to 
bring optimal answers through Hooke’s law. This method focused on solving 
the single-objective optimization problems. Rat Swarm Optimizer (Dhiman 
et al. 2021), a bio-inspired optimization technique, was developed by modeling 
the chasing and attacking behavior of rats to solve the optimization problems. 
This method was mainly developed to solve the engineering design problems. 
Binary EPO (Gaurav et al. 2021) was proposed as the binary model of EPO, 
where the algorithm focuses on resolving discrete type optimization problems 
by considering four transfer features. A hybrid metaheuristic algorithm com
bining emperor penguin and salp swarm algorithm (ESA) (Dhiman, G., 2021) 
was proposed to improve the efficiency of the algorithm to attaining optimal 
results. This algorithm was tested in terms of scalability, convergence, sensi
tivity, and variance.

These metaheuristic algorithms have several limitations and constraints 
such as, defined search space, initial values of parameters involved, objective 
function, etc. All these constraints impose effects on the performance of 
obtaining optimal results. Furthermore, the research in metaheuristics type 
of feature selection is still under scope to achieve the best optimal results. On 
the other hand, the method proposed in this work involves sparse feature 
learning and RNN-LSTM classification. Estimation of sparse features does not 
involve constraints and initializations to select the optimal set of features, 
instead, extracted set of features are modeled in an easily interpretable manner 
that highlights the relevant and non-redundant feature subset. This makes 
computations easier and helps the classifier to identify the discriminations 
precisely.

The techniques applied for classical feature extraction exhibit several draw
backs that limit the development of an efficient scheme for the classification of 
ECG signals. The statistical methods such as PCA and ICA face computational 
complexity and do not take into consideration the symmetric and reflective 
properties. To overcome these disadvantages of classical features extraction 
techniques, sparse features extraction is employed in this research work. 
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Sparse features extraction technique achieves a very high degree of specificity 
when compared to the traditional multivariate analysis techniques (Lee and 
Seung 1999). After reviewing the existing methods of deep learning-based 
ECG classification, it has been found that the work requires a more effective 
model of classification in terms of computational efficiency and detection 
efficiency. RNN-LSTM exhibits excellent recalling ability since it is the only 
neural network with memory, and so the sensitivity of detection is high for 
RNN-LSTM. Furthermore, RNN-LSTM can handle an arbitrary length of 
inputs, unlike CNN which require fixed input length. Hence, the sparse feature 
matrix obtained by sparse learning is sent as input to the RNN-LSTM classifier 
for developing an efficient ECG classifier model.

PROPOSED METHODOLOGY

Dataset

ECG dataset is taken from PhysioNet services from the MIT-BIH Arrhythmia 
database (Tosic 2020). The dataset is downloaded in.mat format. It contains 
ECG signals from 45 patients: 26 male (age group: 32–89) and 19 female (age 
group: 23–89) logged at 360 Hz of sampling frequency and 200 adu/mV of 
gain. These signals are recorded from a single lead and MLII was employed. 
The analysis is done for 1000, 10-second segments of ECG signals which are 
selected randomly. Based on the literature, five often seen types of arrhythmias 
are considered for this research work, they are Normal Sinus Rhythm (NSR), 
Atrial FIBrillation (AFIB), Atrial Flutter (AFL), rhythms with Premature 
Ventricular Contractions (PVC), and Supra Ventricular Tachy Arrhythmia 
(SVTA). The dataset consisting of 547 ECG signals with five labels are pro
cessed for extracting the sparse feature matrix. The feature data of 547 beats 
are split into train and test data. To avoid overfitting, training and testing 
datasets are created by splitting the patients. The training dataset consists of 
feature data of 287 beats (76 AFIB, 14 AFL, 70 PVC, 120 NSR, and 7 SVTA) 
and the test dataset consists of feature data of 260 beats (50 AFIB, 5 AFL, 50 
PVC, 150 NSR, and 5 SVTA).

Proposed Framework

Classification of the morphological ECG signals is essential for the medical 
field in many aspects. This research study incorporates Sparse feature extrac
tion based on Sparse decomposition technique with a machine learning 
classifier model called RNN-LSTM. The framework of the proposed classifica
tion model is shown in Figure 1. ECG signal is taken as input initially. This 
input ECG signal undergoes pre-processing phase, where noise cancellation is 
handled through a denoising bandpass filter. As the research community 
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Figure 1. The framework of the methodology proposed.
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recommends (Kligfield and Okin 2007; Parola and Garcia-Niebla 2017), the 
noise elimination is performed using a 4th order Butterworth low pass filter 
(40 Hz) followed by a 4th order Butterworth high pass filter (0.5 Hz). Band- 
pass Butterworth filter provides high precision filtering by allowing both the 
essential low-frequency components and high-frequency components within 
the predefined range. And hence the noise filter employed in this work does 
lose the information of ECG signals, instead, it removes only the additive noise 
present.

The noiseless signal then proceeds with Adaptive thresholding technique 
for finding the peaks of the ECG signal. After the detection of P-QRS-T peaks 
of the input ECG signal, the segmented signal is decomposed into the dic
tionary matrix (features of the ECG signal) and sparse matrix, using Sparse 
representation technique. Sparse decomposition is performed for each ECG 
data. A total of 547 sparse matrices for 547 ECG data are split into training 
(287) and testing (260) inputs for the RNN-LSTM classifier. Five classes of 
ECG signals are considered, namely, Normal Sinus Rhythm (NSR), Atrial 
FIBrillation (AFIB), Atrial Flutter (AFL), Premature Ventricular 
Contractions (PVC), and Supra Ventricular Tachy Arrhythmia (SVTA). The 
classifier will send the classified result ie., the class under which the test input 
signal falls.

P-QRS-T Peaks Detection Using Adaptive Thresholding Technique

In the adaptive thresholding technique, different thresholds are considered for 
different regions to find the P-QRS-T peaks of an ECG signal. This has been 
presented in our previous work (Sampath and Sumithira 2016). The initial step 
is the estimation of the initial thresholds for each wave segment in the ECG 
signal. The upper and lower threshold values for each peak detection are 
estimated and updated using time–frequency analysis. ECG signals suffer 
from a drift in the baseline caused by respiration, electrodes and other sources. 
A baseline estimate is found initially by taking mean value. This baseline will 
be estimated for each cycle of P-QRS-T.

The next step is to find the R peak and determine its location. At every 
iteration of peaks detection (i.e., the detection of P-QRS-T peaks in one cycle), 
the ECG data sequence between the lower and the upper thresholds of the 
R wave is extracted. The local maximum for the extracted R wave data 
sequence is estimated as the R peak. After estimating the peak value in the 
data sequence, the x-axis and y-axis coordinates are obtained to locate the 
R peak in the ECG signal. The similar procedure is followed for the detection 
and localization of P, Q, S, and T peaks. The only variation for locating Q and 
S peaks is that local minimum value is found instead of local maximum value. 
During this process, if the next P-QRS-T cycle has started, a flag is set to 
initiate the next iteration of peaks detection. With the peaks being detected, 
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the peak intervals of the ECG signals such as RR, PR, RT, and QS are 
determined for the purpose of extracting essential features. There occurs an 
irregularity for AFIB and AFL signals, which is, the absence of P-waves. AFIB 
is distinguished from AFL by its organized electric circuit in the right atrium. 
Hence, AFL produces saw-toothed “f” waves of constant frequency and 
amplitude as a replacement of the P-waves, whereas AFIB does not produce 
“f” waves.

Procedure:
Step 1: Estimate upper and lower thresholds for R wave using time- 

frequency signal analysis.
Step 2: Extract data sequence for the R wave segment.
Step 3: Find the local maximum for the data sequence.
Step 4: Locate the R peak by extracting the x-axis and y-axis coordinates of 

the local maximum.
Step 5: Repeat the steps 1 to 4 for estimating and locating P and T peaks.
Step 6: Estimate upper and lower thresholds for Q wave using time- 

frequency signal analysis.
Step 7: Extract data sequence for the Q wave segment.
Step 8: Find the local minimum for the data sequence.
Step 9: Locate the Q peak by extracting the x-axis and y-axis coordinates of 

the local minimum.
Step 10: Repeat the steps 6 to 9 for estimating and locating the S peak.

Sparse Feature Extraction Based on Sparse Decomposition

The ECG signals with peaks and intervals being determined are processed 
further for the sparse representation. For the purpose of learning linear 
dictionary, a total of 35 meaningful statistical features are extracted from the 
peak and interval estimates. The intervals of a normal ECG data are given in 
Table 1 for reference.

Any change in the intervals or peaks of the ECG signal constitutes to an 
abnormality in the ECG signal. Such kinds of statistical features which provide 
the distinct characteristics of different types of arrhythmias are extracted and 
are given in Table 2:

An unsupervised feature extractor called Sparse feature extraction is applied 
for this feature matrix. The sparse coding will decompose the ECG data signal 
“f ” into dictionary matrix “D” containing 35 features from the input ECG data 
and “sparse � matrix” containing the sparse features that are used for the 
reconstruction of the original data signal. 

f ¼ D� sparsematrix (1) 

Performing matrix decomposition solves the following l0- regularized least 
square problem (Tosic and Frossard 2011).. 
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min
D2C; mf g

1
M

X
M
m¼1

1
2
jjfm � Dsparsematrixmjj

2
2 þ λjjsparsematrixmjj0 (2) 

Where thesparsematrix represents a column of sparse � matrix matrix and fm 
represents a column of f matrix, and M represents a total number of columns. 
The dictionary D is restrained to C matrix where columns l2- norm less than 1. 
This prevents the matrix D from growing larger. The trade-off parameter 
between sparsity and fidelity is denoted by λ. The feature set extracted using 
Sparse decomposition is sent as input to the proposed classifier model for 
classification.

Recurrent Neural Network – Long Short Term Memory (RNN-LSTM)

In machine learning models, RNNs have the ability to solve the purpose of 
sequence handling. RNNs are the only models having internal memory. The 
architecture of the RNN is shown in Figure 2.

There are three layers for the classifier model: an input layer, hidden layer, 
and output layer. The input layer is passive, it accepts the inputs and duplicates 
it into multiple inputs before forwarding to the hidden layers. On the other 
hand, an output layer and hidden layer are active. In the hidden layer, the 

Table 1. Intervals of a normal ECG.
Feature of Normal ECG Signal Interval (ms)

P wave 80
T wave 160
PR interval 120–200
ST interval 320
QT interval 420
PR segment 50–120
ST segment 80–120
QRS complex 80– 100

Table 2. Features extracted.

Signal
Standard 
Deviation Mean Median Kurtosis Skewness Entropy

Min 
value

Max 
value

ECG signal ✓ ✓ ✓ ✓ ✓
RR intervals ✓ ✓ ✓ ✓ ✓
PR intervals ✓ ✓ ✓
RT intervals ✓ ✓ ✓
QS intervals ✓ ✓ ✓
The amplitude of 

R peak
✓ ✓ ✓ ✓

The amplitude of 
P peak

✓ ✓ ✓

The amplitude of 
Q peak

✓ ✓ ✓

The amplitude of 
S peak

✓ ✓ ✓

The amplitude of 
T peak

✓ ✓ ✓
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input values are multiplied by weights and are added with bias. All the outputs 
from the hidden layers are combined in the output layer to produce output 
according to the activation function given.

An RNN can handle small datasets since it deals with short term depen
dencies. But when it comes to large context, an extension of memory is 
required to hold the previous sequences. In that case, LSTM is employed as 
a memory extension to the RNN. LSTM involves a mechanism known as cell 
states for the flow of information. LSTMs have long-term dependencies and 
hence the problem of vanishing gradient in RNN is being resolved. This makes 
the LSTM more suitable for classification problems where time-series data are 
used. The architecture of an LSTM memory cell is given in Figure 3.

LSTM network undergoes training using the backpropagation algorithm. 
Each neuron in the neural network contains an LSTM memory cell. A single 
memory cell of LSTM consists of three gates namely: input gate it, output gate 
Ot, and forget gate ft. An input gate accepts present input (Xt) and includes it 
in the present cell state (Ct−1). A forget gate decides whether to keep or forget 
the previous hidden state (ht−1). At last, the output gate finds the outcome of 
the current state of the cell. The equations for the LSTM gates are expressed as 
follows: 

it ¼ σ wi � ht� 1; xt½ � þ bið Þ (3) 

Ct ¼ tanh wc � ht� 1; xt½ � þ bcð Þ (4) 

ft ¼ σ wf � ht� 1; xt½ � þ bf
� �

(5) 

Ot ¼ σ wo � ht� 1; xt½ � þ boð Þ (6) 

ht ¼ Ot � tanh Ctð Þ (7) 

Figure 2. The architecture of Recurrent Neural Network.
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where σ is the sigmoidal activation function used in input, forget, and output 
gate having a range from 0 to 1, and tanh is the activation function used in cell 
gate having a range from −1 to 1. The activation function decides the output of 
each neuron.The major drawback is diminishing gradients, which make it 
difficult to learn extended data sequences Gradients convey information that is 
used in RNN parameter updates, and when the gradient shrinks, the para
meter updates become minor, implying that no meaningful learning is taking 
place. The term “vanishing gradient” refers to the fact that the backpropagated 

Figure 4. ECG Input Signal.

Figure 3. The architecture of a memory cell of LSTM.
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error signal in a feedforward network (FFN) often reduces (or grows) expo
nentially as the distance from the last layer increases. Predicting problems, 
translating machine, recognizing speech, summarizing the text are the major 
application.

Classification of ECG Signals

The sparse feature matrix extracted from the five classes (NSR, AFIB, AFL, 
PVC, and SVTA) of ECG signals is employed for the training phase of the 
proposed RNN-LSTM neural network classifier. After training the network 
with these matrices, the testing phase is initiated. On giving the extracted 
sparse features of test ECG input signal to the fully trained RNN-LSTM 
network, the network will identify the class of the given input ECG signal.

In real time execution, the comparison between desktop and server com
puters, personal wearable devices use small and low-power processors that are 
substantially slower. As a result, the suggested heartbeat classification method 
must have a low computing intensity to meet the timing constraints for 
continuous execution. It’s worth noting that only the inference (test) step is 
run in real-time and must adhere to strict deadlines. In the beginning, the 
training phase is just done once.

Figure 5. PQRST Peak Detection using Adaptive Thresholding.
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Figure 6. QRS detection using Pan Tompkin’s Method.

Figure 7. Comparison of time consumption.
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RESULTS AND DISCUSSION

Simulation Results

The classification of ECG signals is implemented in the MATLAB environ
ment. The initial step is to determine the peaks of the ECG signal so as to 
extract significant statistical features from the ECG signal. Figure 4 shows 
a sample input ECG signal for which the PQRST peaks are to be detected.

The performance of the popularly known state-of-the-art method called 
Pan Tompkin’s method of PQRST detection is compared with the perfor
mance of the proposed Adaptive Thresholding method in terms of time 
consumption. Figures 5 and 6 show the detection of peaks using Adaptive 
Thresholding and Pan Tompkin’s respectively, for the sample input ECG 
signal shown in Figure 4.

It isobserved that the proposed method of peak detection determines the 
peaks accurately and also consumes less amount of time in comparison with 
the existing Pan Tompkin’s method. The bar plot of the comparison of time 
consumed for detecting the QRS complex of the ECG signal is given in 
Figure 7.

Figure 8 displays the training progress of the proposed Sparse based RNN- 
LSTM network. The developed RNN-LSTM network is composed of five 
layers, they are, input layer, LSTM layer, fully connected layer, softmax 
layer, and a classification layer. The hidden layers consist of a total of 1500 
neurons. The learning rate of the network is 0.01. And the learning is carried 
out for 700 epochs with 4 iterations per epoch; and hence a total of 2800 
iterations.

The 5 labels of the data correspond to the 5 arrhythmia types: NSR, AFIB, 
AFL, rhythms with PVC, and SVTA. Figure 9, provides the details of the 
confusion matrix obtained for the proposed Sparse based RNN-LSTM model 
of ECG classification for the test dataset. With differentiable features being 
extracted using the sparse method, the proposed model of classification is able 
to achieve 100% accuracy for a few classes. The overall accuracy achieved is 
97.3% and the error rate is found to be 2.7% for the proposed Sparse based 
RNN-LSTM classifier.

The performance of the proposed Sparse based RNN-LSTM classifier is 
compared with that of the existing RNN, K-NN, and Decision Tree (DT) 
classifier models. The confusion matrix of the existing RNN classifier for test 
dataset is shown in Figure 10.

The overall accuracy achieved is 91.2% and the error rate is found to be 8.8% 
for the existing RNN classifier.

The confusion matrix of the existing K-NN classifier for test dataset is 
shown in Figure 11.

The overall accuracy achieved is 90.8% and the error rate is found to be 9.2% 
for the existing K-NN classifier.
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Figure 9. Confusion matrix of the proposed sparse-based RNN-LSTM Classifier.

Figure 8. Training progress of RNN-LSTM network.
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The confusion matrix of the existing DT classifier for test dataset is shown 
in Figure 12.

The overall accuracy achieved is 88.5% and the error rate is found to be 
11.5% for the existing DT classifier.

The performance parameters such as Accuracy, Error rate, Sensitivity, 
Precision, and F-score are calculated using False Positive (FP), True Positive 
(TP), False Negative (FN), and True Negative (TN) obtained from the confu
sion matrices.

Accuracy indicates the ratio of the cases detected correctly to the total count 
of cases. 

Accuracy %ð Þ ¼
TN þ TP

Pþ N
� 100% (3) 

Where P is the summation of TP and FP; and N is the summation of TN 
and FN.

Error rate refers to the misclassification rate. It is the ratio of the summation 
of FP and FN to the total count of observations. 

Figure 10. Confusion matrix of the RNN Classifier.
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Errorrate %ð Þ ¼
FN þ FP

Pþ N
� 100% (4) 

Sensitivity (or Recall) is the ratio of correctly selected classes to the sum of 
correctly selected and mistakenly rejected classes 

Sensitivity %ð Þ ¼
TP

TP þ FN
� 100% (5) 

Precision is defined as the ratio of the positive observations detected correctly 
to all the positive outcomes. 

Precision %ð Þ ¼
TP

TP þ FP
� 100% (6) 

F-score refers to the weighted average of Recall and Precision. This parameter 
score considers both FN and FP. The F-score for the classifier is calculated by 
the following expression. 

Figure 11. Confusion matrix of the K-NN Classifier.
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F1score %ð Þ ¼ 2�
Sensitivity� Precision

Recallþ Precision
� 100% (7) 

Table 3 provides the accuracy obtained for each type of arrhythmia using 
different classifier models.

Table 4 provides the comparison of the performance parameters calculated 
for the proposed Sparse based RNN-LSTM classifier and the existing RNN 
(Singh et al. 2018), K-NN (Thomas and Mathew 2016), and DT (Shao et al. 
2018) classifiers.

Figure 12. Confusion matrix of the DT Classifier.

Table 3. Comparison of accuracies.

Method

Accuracy (%)

AFIB AFL PVC NSR SVTA

RNN 97.4 71.4 86.0 95.3 44.4
K-NN 91.8 33.3 86.5 95.9 62.5
DT 97.9 33.3 83.0 92.5 71.4
Proposed sparse-based RNN-LSTM 98 100 100 96.2 100
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From the comparison table, it is evident that the accuracy of classification 
for the proposed Sparse based RNN-LSTM classifier is 6.2% more than the 
RNN classifier, 6.68% more than the K-NN classifier, and 9.04% more than the 
DT classifier. The performance of the proposed classifier shows supremacy 
over the existing RNN, K-NN, and DT classifiers in terms of accuracy, error 
rate, sensitivity, precision, and F-score.

In Table 5, the accuracy of the proposed classification model is compared 
with the recent research work. The comparison shows that the proposed 
classifier model performs better classification of ECG signals when compared 
to the above-mentioned techniques (Chen and Maharatna 2020; Bae and 
Kwon 2021).

Furthermore, the performance of the proposed PQRST peak detection 
using Adaptive thresholding is compared with other proposed approaches of 
peak detection, and the results are displayed in Table 6.

The three parameters considered are, accuracy of R peak detection, positive 
predictivity of R peak, and the sensitivity of R peak prediction. Accuracy of 
R Peak is detected using the formula given in equation 3. Positive Predictivity 
of R Peak is detected using the formula given in Equation (6). Sensitivity of 
R Peak Prediction is detected using the formula given in Equation (5).

Table 4. Comparison of performance parameters.
Method Accuracy (%) Error rate (%) Sensitivity (%) Precision (%) F-Score (%)

RNN 91.2 8.8 76 78.9 83.91
K-NN 90.8 9.2 90 74.01 78.04
DT 88.5 11.5 94 75.62 81.51
Proposed sparse-based RNN-LSTM 97.3 2.7 100 98.84 96.15

Table 5. Comparison of classification methods.

Method Classifier
Accuracy 

(%)

Chen and Maharatna 
(2020)

Attention-based Time Incremental Convolutional Neural Network (ATI- 
CNN)

81.2

Bae and Kwon (2021) Multi-Perspective Convolutional Neural Network 96.4
Proposed Sparse-based RNN-LSTM 97.3

Table 6. Comparison of accuracies of PQRST peak detection techniques.

Method
Accuracy of R Peak 

Prediction (%)
Positive Predictivity 

of R Peak (%)
The sensitivity of R Peak 

Prediction (%)

Pan and Tompkin (Pan and Tompkins 
1985)

99.33 99.56 99.76

Hierarchical Clustering + Discrete Wavelet 
Transform (Yao et al. 2020)

99.83 99.97 99.89

Temporal Characteristics based Detection 
(Niu et al. 2019)

99.64 99.81 99.82

Proposed Sparse based RNN-LSTM 99.9 99.98 100
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Experimental Results

The proposed Sparse based RNN-LSTM classifier is employed in the real- 
world application of classifying ECG signal using a single-lead ECG sensorto 
check its validity with raw data taken directly from the patients. The experi
mental setup of capturing ECG data is integrated with MATLAB/SIMULINK 
for further processing and the schematic is given in Figure 13.

A single-lead ECG sensor is employed for the acquisition of ECG signals 
from the patient under study. The analog device used for sensing the ECG of 
the patients is ADI 8232 (Niu 2019). This AD8232 is a signal conditioning unit 
for ECG as well as other bio-potential sensing applications. This device extract 
amplifies, and filters small-signal even in a noisy environment. The data from 
the sensor is acquired at 360 Hz sampling frequency as recommended by MIT- 
BIH dataset (Tosic 2020). These samples are digitized using an ultralow-power 
ADC (Analog to Digital Converter) and are sent to MATLAB/SIMULINK, 
where the processing is done. The single-lead ECG sensor data are noisier, 
because of the external bio-electric interferences. As the proposed framework 
suggests, the acquired data is passed through a bandpass filter designed using 
a 4th order Butterworth low pass filter followed by a 4th order Butterworth high 
pass filter for noise cancellation. Then the peaks of the noiseless signal are 
detected, features are extracted using sparse decomposition and the input data 
is classified using the proposed RNN-LSTM model. The results obtained for 
the data collected using single-lead are tabulated in Table 7.

The performance of the proposed classifier in the real-world application is 
compared with that of the state-of-the-art classifiers such as RNN, K-NN, and 
DT. The accuracy of the proposed Sparse based RNN-LSTM classifier is7.06% 

Figure 13. Integration of Experimental Setup with MATLAB/SIMULINK.

Table 7. Comparison of results obtained using experimental setup.
Method Accuracy (%) Error rate (%) Sensitivity (%) Precision (%) F-Score (%)

RNN 88.1 11.9 75 75.25 80.86
K-NN 87.3 12.7 86 72.54 77.15
DT 83.6 16.4 92.5 71.88 80.01
Proposed sparse-based RNN-LSTM 97.1 2.9 99.85 98.7 93.65
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better than the accuracy achieved by RNN classifier. It is evident from the table 
that the proposed framework produces improved accuracy rate, error rate, 
sensitivity rate, precision, and F-measure.

Furthermore, the results of the proposed experimental setup are compared 
with existing state-of-the-art approaches (Yao et al. 2020; Niu et al. 2019,; Niu 
2019). Different performance parameters such as accuracy rate, sensitivity rate, 
specificity rate, power, and frequency were compared and recorded in Table 8.

CONCLUSION

The classification of ECG data is done in this research utilizing a Sparse based 
RNN-LSTM classifier. After the phase of PQRST peaks detection using the 
Adaptive Thresholding technique, the ECG signals are subjected to Sparse 
Feature Extraction based on Sparse Decomposition. A total of 35 characteristics 
are extracted and used in the Sparse Decomposition’s Dictionary learning process. 
The ECG signal is divided into two matrices: Sparse and Dictionary. The RNN- 
LSTM network is trained using the two matrices that resulted, as well as their 
accompanying class labels. ECG signals are delivered as test inputs to the trained 
RNN-LSTM network after the training phase. A confusion matrix is created using 
the actual observations and predicted values, and performance measures like as 
accuracy, error rate, sensitivity, F-score, and precision are determined. The pro
posed Sparse-based RNN-LSTM classification model is compared to the existing 
RNN, K-NN, and DT classifiers in terms of performance. The suggested Sparse- 
based RNN-LSTM classifier outperformed the others in a comparison analysis. 
The proposed classifier was also tested in a real-time experimental setup using 
single-lead ECG sensor AD8232, and the results proved that the proposed frame
work was well suited for real-world application as well. In the future, more 
enhancements to the algorithm can be provided to improve the performance.
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Table 8. Comparison of the performances of different experimental setups.

Method
Accuracy 

(%) Power
Frequency 

(Hz)
Sensitivity 

(%)
Precision 

(%)

Naïve Bayes (Bayasi et al. 2015) 86 2.78 μ W 10000 99.83 98.65
Adaptive Decision Logic Threshold (Abubakar 

et al. 2018)
- 115.8 nW 2000 98.66 -

Threshold-based Classifier (Abubakar, Saadeh, 
and Altaf 2018)

97.02 5.04 μ W 1000 94.64 -

Proposed sparse-based RNN-LSTM 97.1 170 μA 360 99.85 98.7
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