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1. Introduction

L et [a0, a1, a2, . . . ] be a simple continued fraction expansion of a real number α where aj’s are positive
integers. If α is a quadratic irrational, then by a theorem of Lagrange [1, p. 44] its continued fraction

will be periodic, i.e.,
α = [a0, a1, . . . , ak, b1, b2, . . . , bn],

where b1, b2, . . . , bn is the period of the expansion of α, and a0, a1, . . . , ak is the non-periodic part. We say that α

is of period k if its periodic part has length k.
If α is a quadratic irrational, then for any positive integer N, Nα is a quadratic irrational and has a periodic

continuous fraction. Cusick [2] presents an algorithm for obtaining the continued fraction of Nα and uses it to
estimate the length of the period of the expansion of Nα to that of α. In this paper, we construct a quadratic
irrational α such that when N is a Fibonacci or Lucas number, the continued fraction of Nα has a period of
length 1, 2 or 4. As we shall see, the length of the period of the new continued fraction depends on the parity
of n, the length of the period of the original continued fraction.

Fibonacci numbers and Lucas numbers are integers that solve the recurrence relation

fn+1 = fn + fn−1 ,

under the initial conditions F0 = 0, F1 = F2 = 1, L0 = 2 and L1 = 1 respectively. Fibonacci polynomials, which
are generated by the rational function

t
1 − xt − t2 =

∞

∑
k=1

Fk(x)tk , (1)

also define the Fibonacci numbers when x = 1. In §2, we construct Fibonacci-like numbers F̃n(m) and use
them to construct αn, the largest zero of the quadratic

x2 − 2NFnx − Fn F̃n(2N) ,

where N is a positive integer. We then show the relationship between the continued fraction of αn and

Fn · [2N, 1(n−1)] ,
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where 1(n) is the sequence 1, 1, 1, . . . , 1 with 1 repeated n times.
In §3, we construct Lucas-like numbers L̃n(m) and use them to construct βn, the largest zero of the

quadratic
y2 − 2NLny − Ln L̃n(2N) ,

where N = 5k + 3 is a positive integer. We then show the relationship between the continued fraction of βn

and the purely periodic continued fraction

Ln · [2N, 1(n−2), 2, 1, 2k, 1, 2, 1(n−2)].

In §4, we generalize these continued fractions, as well as results of §2. Polynomials arising from
convergents of the generalized continued fractions are studied in §5. In particular, we show how these
polynomials relate to Fibonacci and Chebyshev polynomials and show that some of them have their roots
in hyperbolas. Contents of this paper are a summary of results in the dissertation [3].

2. Fibonacci-like numbers and quadratic irrationals

Let m be a positive integer and define the sequence F̃n(m) by the recurrence relation

F̃n(m) = F̃n−1(m) + F̃n−2(m) , (2)

under the initial conditions F̃0(m) = 0, F̃1(m) = 1 and F̃2(m) = m. Using (1) together with the recurrence (2),
we obtain

t + (m − 1)t2

1 − t − t2 =
∞

∑
n=0

F̃n(m)tn. (3)

Clearly, when m = 1 we get the usual Fibonacci sequence. From the generating function (3), and the generating
function of Fibonacci numbers, we get the relation

F̃n+1(m) = mFn + Fn−1. (4)

Now consider the quadratic
x2 − 2NFnx − Fn F̃n(2N)

with the zeros

αn(N) = NFn +
√

N2F2
n + Fn F̃n(2N),

αn(N) = NFn −
√

N2F2
n + Fn F̃n(2N). (5)

Continued fractions of the zeros (5) have some interesting properties which we explore in this paper.
A quadratic irrational α is said to be reduced if α > 1 and −1/α > 1. If α is reduced, then its continued

fraction is purely periodic [1, Theorem 2.48]. First we show that when n odd, 1/(αn(N) − F̃n+1(2N)) is
reduced.

Let Bn(N) = N2F2
n + Fn F̃n(2N), then

1/(αn(N)− F̃n+1(2N)) = NFn + Fn−1 +
√

Bn(N) > 1. (6)

On the other hand,

F̃n+1(2N)− αn(N) = NFn + Fn−1 +
√

Bn(N) > 1.

We have used (4) and the well known identity for Fibonacci numbers

F2
n−1 − FnFn−2 = (−1)n. (7)

Let xn(N) = NFn + Fn−1 +
√

Bn(N). Using (4), and the Euclidean algorithm we get

xn(N) = 2F̃n+1(N) +
1

xn(N)
,
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and together with (6) gives

αn(N) = xn − Fn−1

= F̃n+1(2N) +
1

xn(N)

= [F̃n+1(2N), 2F̃n+1(N)].

When n even, and using the identity (7).

1/(αn(N)− F̃n+1(2N) + 1) =
NFn + Fn−1 +

√
Bn(N)

NFn + Fn−1 +
√

Bn(N)− 1
> 1.

We also have that
F̃n+1(2N)− 1 − αn = NFn + Fn−1 +

√
Bn(N)− 1 > 1.

Now let xn(N) = 1/(1 − (NFn + Fn−1 −
√

Bn(N))), then

xn(N) = 1 +
1

2F̃n+1(N)− 2 + 1/xn(N)
.

This implies that when n even,

αn(N) = F̃n+1(2N)− 1 +
1

xn(N)

= [F̃n+1(2N)− 1, 1, 2F̃n+1(N)− 2].

In each case, the length of the period in the continued fraction expansion of αn(N) is independent of n. We
have proved

Theorem 1. Let αn(N) be the largest zero of the quadratic x2 − 2NFnx − Fn F̃n(2N) and N > 1 be a positive integer,
then the continued fraction of αn(N) is given by

αn(N) = [F̃n+1(2N), 2F̃n+1(N)] ,

when n is odd, and when n even the continued fraction is given by

αn(N) = [F̃n+1(2N)− 1, 1, 2F̃n+1(N)− 2].

We now show the relationship between the continued fraction of αn(N) and Fn · [2N, 1(n−1)]. Let α have
the simple continued fraction

α = [c0, c1, c2, . . . , ck−1, ck] =
pk
qk

, (8)

where p0 = a0 = ⌊α⌋, p−1 = 1, q0 = 1 and q−1 = 0. We will use the correspondence [1, Lemma 2.8](
c0 1
1 0

)(
c1 1
1 0

)
· · ·
(

ck−1 1
1 0

)(
ck 1
1 0

)
=

(
pk pk−1
qk qk−1

)
. (9)

Taking the determinant on both sides of (9) gives the identity

pkqk−1 − pk−1qk = (−1)k+1.

Also, taking the transpose of the matrices on both sides of (9) we get(
ck 1
1 0

)(
ck−1 1

1 0

)
· · ·
(

c1 1
1 0

)(
c0 1
1 0

)
=

(
pk qk

pk−1 qk−1

)
,
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from which we deduce

[ck, ck−1, . . . , c1, c0] =
pk

pk−1
,

[ck, ck−1, . . . , c1] =
qk

qk−1
.

Lemma 1. For all n ≥ 2, and m ≥ 1 we have the continued fraction,

F̃n+1(m)

F̃n(m)
= [1(n−1), m] ,

and for n ≥ 3 we have the continued fraction

F̃n+2(m)

F̃n(m)
= [2, 1(n−2), m] ,

where 1(n) = 1, 1, . . . , 1 n times.

Proof. It can easily show by induction on k that for all k ≥ 1,(
1 1
1 0

)k

=

(
Fk+1 Fk

Fk Fk−1

)
.

It follows that (
1 1
1 0

)k−1(
m 1
1 0

)
=

(
F̃k+1(m) k

F̃k(m) Fk−1

)
,

where we have used (4). It follows by (8), and the correspondence (9) that [1(k−1), m] =
F̃k+1(m)

F̃k(m)
.

Similarly, (
2 1
1 0

)(
1 1
1 0

)k−2(
m 1
1 0

)
=

(
F̃k+2(m) Fk+1

F̃k(m) Fk−1

)
,

from which we deduce that [2, 1(k−2), m] =
F̃k+2(m)

F̃k(m)
.

We can observe that all the partial quotients of [1(n), m] are bounded, and for j ≤ n, its sequence of
convergents {pj/qj} is the same as the sequence of convergents for the continued fraction of Fn+1/Fn, which
converges to the golden ratio. By comparison, for any positive integer m, F̃n+1(m)/F̃n(m) also converges to
the golden ration.

We now show another interesting property of the continued fraction of αn(N).

Theorem 2. For n ≥ 1, let
λn(N) := Fn · [2N, 1(n−1)] ,

where the 1(n) means that 1 has been repeated n times, and Fn is the nth Fibonacci number. Then λn(N) is an algebraic
integer, and when n is odd

λn(N) = [F̃n+1(2N), 2F̃n+1(N)],

while when n is even
λn(N) = [F̃n+1(2N)− 1, 1, 2F̃n+1(N)− 2].

One way of approaching this question is by the use of Chatelet algorithm for integer multiples of a
continued fraction described by Cusick [2] in order to get the continued fraction of λn(N). This approach
is tedious and very involving. We will employ a rather straightforward approach by using the correspondence
(9).

Let x = [2N, 1(n−1)] and recall that

x = [2N, 1(n−1), x] =
xpn + pn−1

xqn + qn−1
,
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where [2N, 1(n−1)] = pn
qn

. By the correspondence (9),

(
2N 1
1 0

)(
1 1
1 0

)n−1

=

(
Fn+1(2N) Fn(2N)

Fn Fn−1

)
,

from which we get

[2N, 1(n−1)] =
F̃n+1(2N)

Fn
,

and hence

x =
xF̃n+1(2N) + F̃n(2N)

xñn + Fn−1
.

Clearly x is the largest zero of the quadratic

Fnx2 − 2NFnx − F̃n(2N) ,

and is given by

x = N +
√

N2 + F̃n(2N)/Fn.

Both x and λn(N) = Fnx are algebraic integers. We also have that Fnx = αn(N), and its continued fraction has
been described in theorem 1.

3. Lucas-like numbers and quadratic irrationals

Let m be a positive integer and define the Lucas-like sequence L̃n(m) by

L̃n(m) = mLn−1 + Ln−2, (10)

where L̃n(1) is the Lucas sequence. The numbers L̃n(m) solves the recurrence relation

L̃n(m) = L̃n−1(m) + L̃n−2(m) ,

with initial conditions L̃0(m) = 3 − m, L̃1(m) = −1 + 2m and L̃2(m) = 2 + m.
For a fixed positive integer N, consider the quadratic

x2 − 2NLnx − Ln L̃n(2N). (11)

The zeros of the quadratic are given by

βn(N) = NLn +
√

N2L2
n + Ln L̃n(2N),

βn(N) = NLn −
√

N2L2
n + Ln L̃n(2N). (12)

Just like in the previous section, we are going to examine the continued fractions of these quadratic irrationals.
We will use the well known identity

L2
n−1 − LnLn−2 = (−1)n−15, (13)

as well as identities that relate the Fibonacci sequence to the Lucas sequence

Ln = Fn+1 + Fn−1 , (14)

and
Ln + 2Ln−1 = 5Fn. (15)

First we show that when n is even, 1/(βn(N)− L̃n+1(2N)) is reduced.
Let Cn(N) = N2L2

n + Ln L̃n(2N),

1/(βn(N)− L̃n+1(2N)) =
1
5

(
NLn + Ln−1 +

√
Cn(N)

)
> 1.
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Where we have used (13). On the other hand,

L̃n+1(2N)− βn(N) = NLn + Ln−1 +
√

Cn(N) > 1.

Let N = 5k + 3 for an integer k ≥ 0, and yn(N) = 1/(βn(N)− L̃n+1(2N)). Using (10) and the Euclidean
algorithm we obtain

yn(N) = 2kLn + 2Fn+1 +
1

NLn + Ln−1 +
√

Cn(N)
.

It can also be shown that

NLn + Ln−1 +
√

Cn(N) = 2L̃n+1(2N) +

(√
Cn(N)− NLn − Ln−1)

)
= 2L̃n+1(2N) +

−(L2
n−1 − LnLn−2)

NLn + Ln−1 +
√

Cn(N)

= 2L̃n+1(N) +
1

yn(N)
.

We now have that when n is even,

βn(N) = 5yn(N)− Ln−1

= L̃n+1(2N) +
1

2kLn + 2Fn+1 +
1

2L̃n+1(N) +
1

yn(N)

=
[

L̃n+1(2N), 2kLn + 2Fn+1, 2L̃n+1(N)
]

.

When n is odd, and using identity (13), we get

1/(βn(N)− L̃n+1(2N) + 1) =
NLn + Ln−1 +

√
Cn(N)

NLn + Ln−1 +
√

Cn(N)− 5
> 1 ,

for n > 1. We also have that

L̃n+1(2N)− 1 − βn = NLn + Ln−1 +
√

Cn(N)− 1 > 1.

It can easily be verified that for all n ≥ 1, 1 < yn(N) < 2. Let N = 5k + 3 where k ≥ 0 is an integer, and

yn(N) = 1/
(

1 −
(

NLn + Ln−1 −
√

Cn(N)

))
.

Then,

yn(N) = 1 +
1

1
5

(
NLn + Ln−1 +

√
Cn(N)− 5

)
= 1 +

1

2kLn + 2Fn+1 − 2 + 1
5

(
5 − NLn − Ln−1 +

√
Cn(N)

) .

It is easy to show (by induction on n) that

0 <
1
5

(
5 − NLn − Ln−1 +

√
Cn(N)

)
< 1.
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Now,

1
1
5

(
5 − NLn − Ln−1 +

√
Cn(N)

) = 1 +
1

NLn + Ln−1 +
√

Cn(N)− 1
= 1 +

1

2L̃n+1(N)− 2 +
1

yn(N)

.

This implies that when n is odd,

βn(N) = [L̃n+1(2N)− 1, 1, 2kLn + 2Fn+1 − 2, 1 2L̃n+1(N)− 2].

We can also make the simplification

2kLn + 2Fn+1 =
2
5

Ln+1(N) ,

in the two statements above. We have proved the following result:

Theorem 3. Let N = 5k + 3 for k ≥ 0, and βn(k) be the largest zero of the quadratic x2 − 2NLnx − Ln L̃n(2N), then
the continued fraction of βn(k) is given by

βn(N) = [L̃n+1(2N)− 1, 1,
2
5

Ln+1(N)− 2, 1, 2L̃n+1(N)− 2] ,

when n is odd, and is given by

βn(N) = [L̃n+1(2N),
2
5

Ln+1(N), 2L̃n+1(N)] ,

when n is even.

There are some purely periodic continued fractions with periods of arbitrary length which when
multiplied by Ln, give periodic continued fractions with period of length 2 or 4 depending on the parity of
n. We give some of these continued fractions below.

Theorem 4. Let n ≥ 2, k ≥ 0 and

µn(k) := Ln · [2(5k + 3), 1(n−2), 2, 1, 2k, 1, 2, 1(n−2)] ,

where the 1(n) means that 1 has been repeated n times, and Ln is the nth Lucas number. Then µn(k) is an algebraic
integer, and when n is odd

µn(k) =
[

L̃n+1(10k + 6)− 1, 1,
2
5

Ln+1(5k + 3)− 2, 1, 2L̃n+1(5k + 3)− 2
]

,

while when n is even it is given by

µn(k) = [L̃n+1(10k + 6),
2
5

Ln+1(5k + 3), 2L̃n+1(5k + 3)].

Proof. Fix N = 5k + 3 and let
y = [2N, 1(n−2), 2, 1, 2k, 1, 2, 1(n−2)].

Then
y = [2N, 1(n−2), 2, 1, 2k, 1, 2, 1(n−2), y] =

ypn + pn−1

yqn + qn−1
,

where [2N, 1(n−2), 2, 1, 2k, 1, 2, 1(n−2), y] = pn
qn

.
By the correspondence (9),(
2N 1
1 0

)(
1 1
1 0

)n−2(
2 1
1 0

)(
1 1
1 0

)(
2k 1
1 0

)(
1 1
1 0

)(
2 1
1 0

)(
1 1
1 0

)(n−2)
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=

(
2N 1
1 0

)(
Fn−1 Fn−2

Fn−2 Fn−3

)(
6(3k + 2) 6k + 5

6k + 5 2k + 2

)(
Fn−1 Fn−2

Fn−2 Fn−3

)

=

(
pn pn−1

qn qn−1

)
,

with pn, pn−1, qn and qn−1 given by

pn =
4
5

N2L2
n +

6
5

NLnLn−1 +
1
5

(
L2

n − LnLn−1 + L2
n−1

)
,

pn−1 =
2
5

L̃n+1(N)L̃n(2N),

qn =
2
5

Ln L̃n+1(N)

qn−1 = (2k + 1)LnLn−1 +
1
5

(
L2

n + L2
n−1

)
.

In evaluating the matrix multiplication, we used the identities (10), (14) and (15). Clearly, y is the largest zero
of the quadratic

y2qn + (qn−1 − pn)y − pn−1.

Here,

qn−1 − pn = −4
5

NLn L̃n+1(N) ,

and so the quadratic can also be written as

2
5

L̃n+1(N)
(

y2Ln − 2NLny − L̃n(2N)
)

.

The largest zero of the quadratic is given by

y =
1

Ln

(
NLn +

√
N2L2

n + Ln L̃n(2N)

)
.

Clearly, y is an algebraic integer, and so is µn(k) = Lny. The continued fraction of µn(k) = Lny follows from
theorem 3.

4. Generalizations

We now examine the continued fraction of Gk(N, x) defined by

Gk(N, x) := Fk(x) · [2N, x(k−1)] , (16)

where x ≥ 1, x(k) = x, x, . . . , x repeated k times and n is a non-zero positive integer.
Let G̃k(N, x) = [2N, x(k−1)] so that

G̃k(N, x) = [2N, x(k−1), G̃k(N, x)] =
G̃k(N, x)pk(x) + pk−1(x)
G̃k(N, x)qk(x) + qk−1(x)

,

where [2N, x(k−1)] = pk(x)
qk(x) . It can easily be shown by induction on k that

(
x 1
1 0

)k

=

(
Fk+1(x) Fk(x)

Fk(x) Fk−1(x)

)
,
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from which we get(
2N 1
1 0

)(
x 1
1 0

)k−1

=

(
2N 1
1 0

)(
Fk(x) Fk−1(x)

Fk−1(x) Fk−2(x)

)

=

(
2NFk(x) + Fk−1(x) 2NFk−1(x) + Fk−2(x)

Fk(x) Fk−1(x)

)
.

This implies that

[2N, x(k−1)] =
2NFk(x) + Fk−1(x)

Fk(x)
,

and

G̃k(N, x) =
G̃k(N, x) (2NFk(x) + Fk−1(x)) + 2NFk−1(x) + Fk−2(x)

G̃k(N, x)Fk(x) + Fk−1(x)
.

G̃k(N, x) is the largest zero of the quadratic

Fk(x)z2 − 2NFk(x)z − (2NFk−1(x) + Fk−2(x)),

and is given by

G̃k(N, x) = N +
√

N2 + (2NFk−1(x) + Fk−2(x))/Fk(x).

We can now write
Gk(N, x) = NFk(x) +

√
N2F2

k (x) + Fk(x)(2NFk−1(x) + Fk−2(x)). (17)

As we will see below, the continued fraction of Gk(N, x) depends on the parity of k because of the identity

F2
k−1(x)− Fk(x)Fk−2(x) = (−1)k. (18)

To simplify the notation, let

βk(N, x) = N2F2
k (x) + Fk(x)(2NFk−1(x) + Fk−2(x)) ,

so that Gk(N, x) = NFk(x) +
√

βk(N, x). We first examine the continued fraction of Gk(N, x) for k odd.
For all k ≥ 1 and x ≥ 1, we have by (18) that βk(N, x) = (NFk(x) + Fk−1(x))2 + 1 so that

Gk(N, x)− (2NFk(x) + Fk−1(x)) =
√

βk(N, x)− (NFk(x) + Fk−1(x)) > 0.

1/(Gk(N, x)− (2NFk(x) + Fk−1(x))) = NFk(x) + Fk−1(x) +
√

βk(N, x) > 0.

Denote this by G(1)
k (N, x) so that

G(1)
k (N, x)− (2NFk(x) + 2Fk−1(x)) =

√
βk(N, x)− (NFk(x) + Fk−1(x)).

We now have that
1/(G(1)

k (N, x)− (2NFk(x) + 2Fk−1(x))) = G(1)
k (N, x).

Hence the continued fraction of G(1)
k (N, x) is purely periodic with period of length 1 given by {2NFk(x) +

2Fk−1(x)}. For all k > 1 odd, the continued fraction of Gk(N, x) is given by,

Gk(N, x) = [2NFk(x) + Fk−1(x), 2NFk(x) + 2Fk−1(x)].

Now for the case when k > 1 is even, by identity (18), βk(N, x) = (NFk(x) + Fk−1(x))2 − 1 so that

Gk(N, x)− (2NFk(x) + Fk−1(x)− 1) =
√

βk(N, x)− (NFk(x) + Fk−1(x)) + 1 > 0.
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Denote this by G(2)
k (N, x) so that

1/G(2)
k (N, x) = 1 +

NFk(x) + Fk−1(x)−
√

βk(N, x)

G(2)
k (N, x)

= 1 +
F2

k−1(x)− Fk(x)Fk−2(x)

NFk(x) + Fk−1(x) +
√

βk(N, x)− (F2
k−1(x)− Fk(x)Fk−2(x))

= 1 +
1

NFk(x) + Fk−1(x) +
√

βk N, (x)− 1

= 1 +
1

2NFk(x) + 2Fk−1(x)− 2 + G(2)
k (N, x)

.

We can now see that 1/G(2)
k (N, x) is purely periodic with a period of length 2 given by {1, 2NFk(x) +

2Fk−1(x)− 2}. For all k > 1 even, the continued fraction of Gk(N, x) is given by,

Gk(N, x) = [2NFk(x) + Fk−1(x)− 1, 1, 2NFk(x) + 2Fk−1(x)− 2].

We have proved the following result:

Theorem 5. For all k ≥ 1 and x ≥ 1, the product of the kth Fibonacci polynomial Fk(x) and the periodic continued
fraction [2N, x(k−1)] gives the periodic continued fraction

[2NFk(x) + Fk−1(x), 2NFk(x) + 2Fk−1(x)] ,

when k is odd, and
[2NFk(x) + Fk−1(x)− 1, 1, 2NFk(x) + 2Fk−1(x)− 2] ,

when k is even.

If we set x = 1 in the above theorem, we get the result of Theorem 2.

5. Polynomials from convergents of [N, x(k)]

In this section, we show how polynomials arising from the convergents of [N, x(k)] are related to
Chebyshev and Fibonacci polynomials. We describe the polynomials for k = 1, 2 and 3 and show how the
roots of these polynomials are distributed.

For a fixed k = 1, let pn(N, x)/qn(N, x) be the convergents of [N, x]. When n ≡ (0 mod 2) and n ≡ (1
mod 2), q2n(N, x) and q2n+1(N, x) are respectively generated by the rational functions

1 − t
1 − (Nx + 2)t + t2 and

x
1 − (Nx + 2)t + t2 . (19)

Comparing these generating functions to the generating function of Chebyshev polynomials of the second
kind below

1
1 − 2xt + t2 =

∞

∑
n=0

Un(x)tn, (20)

we have

q2n(N, x) = Un(N/2x + 1)− Un−1(N/2x + 1) and q2n+1(N, x) = xUn(N/2x + 1).

To determine the roots of qk(x), first note that Un(x) has all its roots in the interval (−1, 1) given by xk =

cos
(

k
n+1 π

)
[4, section 2.2]. It follows that q2n+1(N, x) has real roots in the interval (−4/N, 0] and are given by

xk = 2
N

(
cos

(
k

n+1 π
)
− 1
)

. It can also be shown that q2n(N, x) has n − 1 real roots in the interval (−4/N, 0]
and one real root outside this interval.
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Now for the case when k = 2, let pn(N, x)/qn(N, x) be the convergents of [N, x, x]. When n ≡ (0 mod 3)
and n ≡ (1 mod 3), q3n(N, x) and q3n+1(N, x) are respectively generated by the rational functions

x + t
1 − (Nx2 + 2x + N)t − t2 and

x
1 − ((Nx2 + 2x + N))t − t2 , (21)

and their zeros seem to lie close to the hyperbola y2 − x2 = 1 − 1/N2.
Let pn(N, x)/qn(N, x) be the convergents of [N, x, x]. When n ≡ (2 mod 3), qn(N, x) are generated by

the rational function
1 + x2

1 − (Nx2 + 2x + N)t − t2 ,

and have a factor of x2 + 1. By eliminating this factor and making a change of variable x 7→ x − 1/N we get
(after clearing denominators) polynomials Qn(N, x) that are generated by

1
1 − (N2x2 + N2 − 1)t − N2t2 =

∞

∑
n=0

Qn(N, x)tn. (22)

This shifting of the polynomial reduces the number of terms as can be seen in the generating function above.
Comparing this generating function to that of the Fibonacci polynomials (1), we have

Qk(N, x) = NkFk

(
Nx2 + N − 1/N

)
.

Theorem 6. For any non-zero k ∈ R, let Qn(N, x) be as defined in equation (22). Then for all n ≥ 1, all the zeros
Qn(N, x) lie on the hyperbola

H1 : y2 − x2 =
N2 − 1

N2 .

Proof. Bicknell and Hoggatt [5] proved that if Fn(x) = 0 then x = 2i cos(jπ/n) for j = 1, 2, . . . , n − 1. Let

z =

√
N2 − 1

N
(sinh ϕ + i cosh ϕ) ,

where 0 < N. Then

Nz2 + N − 1/N = (N − 1/N)(2i sinh ϕ cosh ϕ − 1) + N − 1/N

= (N − 1/N)i sinh 2ϕ.

Now Qn(N, z) = 0 implies that

sinh 2ϕ =
2N

N2 − 1
cos θj ,

where θj = jπ/(n + 1) for j = 1, 2, . . . , n − 1. Using the identity

sinh−1 x = log(x +
√

x2 + 1) − ∞ < x < ∞ , (23)

in which we consider the principal branch of the log, we get

ϕj =
1
2

log
∣∣∣2N cos θj +

√
4N2 cos2 θj + (N2 − 1)2

∣∣∣− 1
2

log |N2 − 1|. (24)

The 2n zeros of Qn(N, z) are now given by

zj = ±
√
(1 − 1/N2)(sinh ϕj + i cosh ϕj) , (25)

for j = 1, 2, . . . , n − 1 where ϕj is given by (24). It is straightforward to check that all these points lie on H1.

Numerical calculations suggest that polynomials generated by the rational functions (22) have their roots
close to H1.
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Polynomials arising from the convergents of [N, x(k)] seem to get more complicated as k gets larger. For
an example, let k = 3, and pn(N, x)/qn(N, x) be the convergents of [N, x, x, x] then q4n+3(N, x) are generated
by

x(x2 + 2)
1 − (Nx3 + 2x2 + 2Nx + 2)t + t2 .

Now for k = 4, q5n+4(N, x) are generated by

x4 + 32 + 1
1 − (Nx4 + 2x3 + 3Nx2 + 4x + N)t − t2 .

In general, for a fixed k, let qn(N, x) be the denominator of the convergents of [N, x(k)] when n ≡ −1 mod (k+
1). To simplify the notation, denote them by Qm(x). Then Qm(x) are generated by

Fk+1(x)
1 − gk(N, x)t − (−1)kt2 =

∞

∑
m=0

Qm(N, x)tm, (26)

where gk(N, x) are generated by the rational function

N + 2t
1 − xt − t2 =

∞

∑
k=0

gk(N, x)tk. (27)

By (1), we get the explicit expression for gk(N, x) as

gk(N, x) = NFk(x) + 2Fk−1(x).

We can apply a theorem of Khang Tran [6, Theorem 1], to determine the curve on which the roots of
Qm(N, x) lie. As k increases however, so does the difficulty in describing this curve. As an example, for k = 4
the roots of Qm(3, x)/F5(x) lie on the curve given by

3x4 − 18x2y2 + 3y4 + 2x3 − 6xy2 + 9x2 − 9y2 + 4x + 3 = 0.

The relationship to Fibonacci and Chebyshev polynomials of the second kind follows from the generating
function (26). For a fixed k that is even,

Qn(N, x) = Fk+1(x)Fn(gk(N, x)),

while for a fixed k that is odd,
Qn(N, x) = Fk+1(x)Un(gk(N, x)).

Conclusion

In conclusion, we pose a question. Are there any other integer sequences fn such that f̃n+1(m) := m fn +

fn−1, and for which the continued fraction of

1
fn

(
N fn +

√
N2 f 2

n + fn f̃n(2N)

)
is purely periodic with length of the period depending on n. And the continued fraction of

N fn +
√

N2 f 2
n + fn f̃n(2N)

is periodic with a fixed period length independent of n?
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